3.4 直线与圆的位置关系
一、选择题:
1.若∠OAB=30°,OA=10cm,则以O为圆心,6cm为半径的圆与射线AB的位置关系是( )
A.相交 B.相切 C.相离 D.不能确定
2.Rt△ABC中,∠C=90°,AB=10,AC=6,以C为圆心作⊙C和AB相切,则⊙C的半径长为( )
A.8 B.4 C.9.6 D.4.8
3.⊙O内最长弦长为 ,直线 与⊙O相离,设点O到 的距离为 ,则 与 的关系是( )
A. = B. > C. > D. <
4.以三角形的一边长为直径的圆切三角形的另一边,则该三角形为( )
A.锐角三角形 B.直角三角形
C.钝角三角形 D.等边三角形
5.菱形对角线的交点为O,以O为圆心,以O到菱形一边的距离为半径的圆与其他几边的关系为( )
A.相交 B.相切 C.相离 D.不能确定
6.⊙O的半径为6,⊙O的一条弦AB为6 ,以3为半径的同心圆与直线AB的位置关系是( )
A.相离 B.相交 C.相切 D.不能确定
7.下列四边形中一定有内切圆的是( )
A.直角梯形 B.等腰梯形 C.矩形 D.菱形
8.已知△ABC的内切圆O与各边相切于D、E、F,那么点O是△DEF的( )
A.三条中线交点 B.三条高的交点
C.三条角平分线交点 D.三条边的垂直平分线的交点
9.给出下列命题:
①任一个三角形一定有一个外接圆,并且只有一个外接圆;
②任一个圆一定有一个内接三角形,并且只有一个内接三角形;
③任一个三角形一定有一个内切圆,并且只有一个内切圆;
④任一个圆一定有一个外切三角形,并且只有一个外切三角形.
其中真命题共有( )
A.1个 B.2个 C.3个 D.4个
二、证明题
1.如图,已知⊙O中,AB是直径,过B点作⊙O的切线BC,连结CO.若AD∥OC交⊙O于D.求证:CD是⊙O的切线.
2.已知:如图,同心圆O,大圆的弦AB=CD,且AB是小圆的切线,切点为E.求证:CD是小圆的切线.
3.如图,在Rt△ABC中,∠C=90°,AC=5,BC=12,⊙O的半径为3.
(1)当圆心O与C重合时,⊙O与AB的位置关系怎样?
(2)若点O沿CA移动时,当OC为多少时?⊙C与AB相切?
4.如图,直角梯形ABCD中,∠A=∠B=90°,AD∥BC,E为AB上一点,DE平分∠ADC,CE平分∠BCD,以AB为直径的圆与边CD有怎样的位置关系?
5.有一块锐角三角形木板,现在要用它截成一个最大面积的圆形木板,问怎样才能使圆形木板面积最大?
6.如图,AB是⊙O直径,⊙O过AC的中点D,DE⊥BC,垂足为E.
(1)由这些条件,你能得出哪些结论?(要求:不准标其他字母,找结论过程中所连的辅助线不能出现在结论中,不写推理过程,写出4个结论即可)
(2)若∠ABC为直角,其他条件不变,除上述结论外你还能推出哪些新的正确结论?并画出图形.(要求:写出6个结论即可,其他要求同(1))
7.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4.若以C为圆心,R为半径所作的圆与斜边AB只有一个公共点,则R的取值范围是多少?
8.如图,有一块锐角三角形木板,现在要把它截成半圆形板块(圆心在BC上),问怎样截取才能使截出的半圆形面积最大?(要求说明理由)
9.如图,直线ι1、ι2、ι3表示相互交叉的公路.现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有几处?
参考答案
一、1-5 A D C B B ; 6-9 C D D B
二、1.提示:连结OC,证△AOC与△BOC全等
2.作垂直证半径,弦心距相等
3.①垂直三角形的高,用面积方法求;②△AOE∽△ABC即可
4.用角平分线定理证明EF=EA=EB即可
5.做三角形的内切圆
6.①DE与⊙O相切,AB=BC,DE2+CE2=CD2,∠C+∠CDE=90°
②BC是⊙O的切线,有DE=1/2AB等.
7.R=2.4或3<R≤4
8.∠A角平分线与BC的交点为圆心O,O到AC的距离为半径做圆
9.4