当前位置:首页 > 七年级 > 数学试卷

【323201】(安徽专版)2024春七年级数学下册 第9章 分式学情评估(新版)沪科版

时间:2025-01-15 19:18:27 作者: 字数:10028字
简介:


9章学情评估

一、选择题(本大题共10小题,每小题4分,共40)

1.在代数式x,,xy2,,,x2-中,分式共有(  )

A2 B3 C4 D5

2.若分式的值为0,则x的值为(  )

A.-2 024   B2 024   C0 D±2 024

3.下列选项是最简分式的是(  )

A. B. C. D.

4.解分式方程-=2时,去分母后变形为(  )

A2(x1)2(x3) B2(x1)2(x3)

C2(x1)2 D2(x1)2(3x)

5.将分式中的xy的值同时扩大到原来的3倍,则分式的值(  )

A.扩大到原来的3 B.扩大到原来的6

C.不变 D.扩大到原来的9

6.若分式□的运算结果为x,则在“□”中添加的运算符号为(  )

A÷ B.- C.+或× D.-或÷

7.已知x2x10,计算÷的值是(  )

A1 B.-1 C2 D.-2

8.某优秀毕业生向我校捐赠1 080本课外书,现用AB两种不同型号的纸箱包装运送,单独使用B型纸箱比单独使用A型纸箱可少用6个;每个B型纸箱比每个A型纸箱可多装15本.若设每个A型纸箱可以装书x本,则根据题意列得方程为(  )

A.=+6 B.=-6

C.=-6 D.=+6

9.若关于x的方程+=2的解为正数,则m的取值范围是(  )

A. m<6 B. m>6 C. m<6m≠0 D. m≥6

10.若整数a使关于x的不等式组有且只有2个偶数解,且关于y的分式方程+1=有解,且解为整数,则符合条件的所有整数a的和为(  )

A4 B8 C10 D12

二、填空题(本大题共4小题,每小题5分,共20)

11.要使分式有意义,则x的取值范围是________

12.分式,,的最简公分母为________

13.已知关于x的分式方程+2=-有增根,则m________

14.阅读材料:有些特殊实数可以使等式+=1成立,例如:x2y2时,+=1成立,我们称(22)是使+=1成立的“神奇数对”.请回答下列问题:

(1)数对,(11)中,使+=1成立的“神奇数对”是____________

(2)(5t5t)是使+=1成立的“神奇数对”,则t的值为____________

三、(本大题共2小题,每小题8分,共16)

15.已知分式,当x2时,分式的值为0;当x=-2时,分式没有意义,求ab的值.






16.计算:

(1)+;




(2)÷.





四、(本大题共2小题,每小题8分,共16)

17.解分式方程.

(1)+=1





(2)+=.






18.先化简÷,再选取一个合适的整数代入求值.








五、(本大题共2小题,每小题10分,共20)

19.化简:+.

方方的解答如下:

原式=-

.

方方的解答正确吗?如果不正确,请写出正确的解答过程.












20.已知a>0M=,N.

(1)a3时,计算MN的值;

(2)猜想MN的大小关系,并说明理由.









六、(本题满分12)

21.定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”.如:==+=1+,==+=2-,则和都是“和谐分式”.

(1)下列分式:①;②;③.其中属于“和谐分式”的是________(填序号)

(2)将“和谐分式”化成一个整式与一个分子为常数的分式的和的形式为 =________________

(3)应用:先化简-÷,并求当x取什么整数时,该式的值为整数.
















七、(本题满分12)

22.根据以下素材,探索完成任务.

如何设计奖品购买及兑换方案?

素材1

某文具店销售某种钢笔与笔记本,已知钢笔的单价是笔记本的2倍,用120元购买笔记本的数量比用160元购买钢笔的数量多8.

素材2

某学校花费400元购买该文具店的钢笔和笔记本作为奖品颁发给“优秀学生”,两种奖品的购买数量均不少于20,且购买笔记本的数量是10的倍数.

素材3

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/843/" title="安徽" class="c1" target="_blank">安徽</a> <a href="/tags/846/" title="分式" class="c1" target="_blank">分式</a>

学校花费400元后,文具店赠送m(1<m<10)兑换券(如图)用于商品兑换.兑换后,笔记本与钢笔数量相同.

问题解决

任务1

求商品单价

请运用适当方法,求出钢笔与笔记本的单价.

任务2

探究购买方案

探究购买钢笔和笔记本数量的所有方案.

任务3

确定兑换方式

运用数学知识,任选一种购买方案并说明符合条件的兑换方式.








八、(本题满分14)

23.已知关于x的分式方程-=1.

(1)a2b1时,求分式方程的解;

(2)a1时,求b为何值时分式方程-=1无解;

(3)a3b,且ab为正整数,当分式方程-=1的解为整数时,求b的值.



答案

一、1.B 2.B 3.D 4.B 5.D 6.D

7A 点拨:÷÷·.

因为x2x10,所以x2x1,所以原式==1.

8C

9C 点拨:原方程化为整式方程,得2xm2(x2)

解得x2.

因为关于x的方程+=2的解为正数,

所以2>0,解得m<6.

因为x2时原方程无解,所以2-≠2

解得m≠0.所以m的取值范围为m<6m≠0.

10C 点拨:

解不等式①,得x≥.解不等式②,得x4.

因为不等式组有且只有2个偶数解,

所以≤x4,且-2<≤0,所以1≤a7.

因为a是整数,所以a可取的值有123456 .

1=,

去分母,得3y4y22ya,解得y3.

因为方程有解,且解为整数,所以y2≠0a2的倍数.所以y≠2,即3-≠2,所以a≠2,所以a的取值为46.

所以符合条件的所有整数a的和为10,故选C.

二、11.x2 12.24x2y2z 13.3 

14(1) (2)±

三、15.解:根据题意,得2b02×(2)a0

解得a4b2.所以ab426.

16.解:(1)原式==.

(2)原式=·.

四、17.解:(1)去分母,得x52x5,解得x0.

检验:当x0时,2x5≠0.x0是原分式方程的解.

(2)去分母,得6x3(x1)x5,解得x1.

检验:当x1时,x(x1)0.故原分式方程无解.

18.解:原式=·(a1)(a1)

·(a1)(a1)

·(a1)(a1)

·(a1)(a1)

.

a2时,原式==(a的取值不唯一)

五、19.解:方方的解答不正确,正确解答过程如下:

+=-

==.

20.解:(1)a3时,M==,N==.

(2)猜想:M<N.

理由:MN=-=

.因为a>0,所以a2>0a3>0

所以<0,即MN<0,所以M<N.

六、21.解:(1)①②③ (2)a1

(3)原式=-·

=-=

==2.

所以当x1±1x1±2时,该式的值为整数,此时x0或-21或-3.由题意可知x≠01,-1,-2,所以当x=-3时,该式的值为整数.

七、22.解:任务1:设笔记本的单价为x元,则钢笔的单价为2x元.根据题意,得=+8,解得x5.经检验,x5是所列方程的解,且符合题意.当x5时,2x10.

所以钢笔的单价为10元,笔记本的单价为5元.

任务2:设购买钢笔a支,笔记本b本.

根据题意,得10a5b400,则a40b.

由题意知a≥20b≥20,且b10的倍数,

所以或或

所以购买方案有:购买钢笔30支,笔记本20本;购买钢笔25支,笔记本30本;购买钢笔20支,笔记本40本.

任务3(答案不唯一):当购买钢笔30支,笔记本20本时,设用y张兑换券兑换钢笔,则用(my)张兑换券兑换笔记本.根据题意,得30y202(my),整理,得y.因为1<m<10,且my均为非负整数,

所以易得或所以文具店赠送5张兑换券,全部兑换笔记本,或文具店赠送8张兑换券,其中2张兑换钢笔,6张兑换笔记本.

八、23.解:(1)a2b1代入分式方程-=1,得-=1.方程两边同时乘以(2x3)(x5)

2(x5)(1x)(2x3)(2x3)(x5)

去括号,得2x102x2x233x2x23x10x15.

移项、合并同类项,得10x=-2.系数化为1,得x=-.

检验:当x=-时,(2x3)(x5)≠0,所以原分式方程的解是x=-.

(2)a1代入分式方程-=1

得-=1.方程两边同时乘以(2x3)(x5)

(x5)(bx)(2x3)(2x3)(x5)

x52x23x2bx3b2x27x15

(112b)x3b10.

112b0,即b=时,方程(112b)x3b10无解,即分式方程-=1无解;

112b≠0时,x.

2x30,即x=-时,分式方程-=1无解,此时=-,求得此方程无解;

x50,即x5时,分式方程-=1无解,此时=5,解得b5.

综上所述,b=或b5时,分式方程-=1无解.

(3)a3b代入分式方程-=1,得+=1,方程两边同时乘以(2x3)(x5)

3b(x5)(xb)(2x3)(2x3)(x5)

整理得(10b)x18b15.因为b为正整数,

所以10b≥11,所以x.

因为x===18-,且x为整数,所以10b195的因数.

所以10b可以取13153965195这五个数.对应地,x35131517b352955185.x5时,x50,所以x5是分式方程+=1的增根,所以b5不合题意,应舍去.所以b的值为32955185.