【332454】3.4 直线与圆的位置关系 同步练习3
3.4 直线与圆的位置关系
一、填空题:
1.在Rt△ABC中,∠C=90°,AC=12cm,BC=5cm,以点C为圆心,6cm 的长为半径的圆与直线AB的位置关系是________.
2.如图1,在△ABC中,AB=AC,∠BAC=120°,⊙A与BC相切于点D,与AB相交于点E,则∠ADE等于____度.
(1) (2) (3)
3.如图2,PA、PB是⊙O的两条切线,A、B为切点,直线OP交⊙A于点D、E,交AB 于C.图中互相垂直的线段有_________(只要写出一对线段即可).
4.已知⊙O的半径为4cm,直线L与⊙O相交,则圆心O到直线L的距离d 的取值范围是____.
5.如图3,PA、PB是⊙O的切线,切点分别为A、B,且∠APB=50°,点C是优弧
上的一点,则∠ACB的度数为________.
6
.如图,⊙O为△ABC的内切圆,D、E、F为切点,∠DOB=73°,∠DOE=120°,
则∠DOF=_______度,∠C=______度,∠A=_______度.
二、选择题:
7.若∠OAB=30°,OA=10cm,则以O为圆心,6cm为半径的圆与直线AB 的位置关系是( )
A.相交 B.相切 C.相离 D.不能确定
8.给出下列命题:①任意三角形一定有一个外接圆,并且只有一个外接圆; ②任意一个圆一定有一个内接三角形,并且只有一个内接三角形;③任意一个三角形一定有一个内切圆,并且只有一个内切圆;④任意一个圆一定有一个外切三角形, 并且只有一个外切三角形,其中真命题共有( )
A.1个 B.2个 C.3个 D.4个
9.如L是⊙O的切线,要判定AB⊥L,还需要添加的条件是( )
A.AB经过圆心O B.AB是直径
C.AB是直径,B是切点 D.AB是直线,B是切点
10.设⊙O的直径为m,直线L与⊙O相离,点O到直线L的距离为d,则d与m的关系是( )
A
.d=m
B.d>m C.d>
D.d<
11.在平面直角坐标系中,以点(-1,2)为圆心,1为半径的圆必与( )
A.x轴相交 B.y轴相交 C.x轴相切 D.y轴相切
12.如图,AB、AC为⊙O的切线,B、C是切点,延长OB到D,使BD=OB,连接AD,如果∠DAC=78°,那么∠ADO等于( )
A. 70° B.64° C.62° D.51°
三、解答题:
13.如图,AB是半圆O的直径,C为半圆上一点,过C作半圆的切线,连接AC, 作直线AD,使∠DAC=∠CAB,AD交半圆于E,交过C点的切线于点D.
(1)试判断AD与CD有何位置关系,并说明理由;
(2)若AB=10,AD=8,求AC的长.
14.如图,BC是半圆O的直径,P是BC延长线上一点,PA切⊙O于点A,∠B=30°.
(1)试问AB与AP是否相等?请说明理由.
(2)若PA=
,求半圆O的直径.
15.如图,∠PAQ是直角,半径为5的⊙O与AP相切于点T,与AQ相交于两点B、C.
(1)BT是否平分∠OBA?证明你的结论.
(2)若已知AT=4,试求AB的长.
16.如图,有三边分别为0.4m、0.5m和0.6m的三角形形状的铝皮,问怎样剪出一个面积最大的圆形铝皮?请你设计解决问题的方法.
17.如图,AB为半圆O的直径,在AB的同侧作AC、BD切半圆O于A、B,CD切半圆O 于E,请分别写出两个角相等、两条边相等、两个三角形全等、 两个三角形相似等四个正确的结论.
18.如图,已知:⊙D交y轴于A、B,交x轴于C,过点C的直线:y=-2
-8
与y轴交于点P.
(1)试判断PC与⊙D的位置关系.
(2)判断在直线PC上是否存在点E,使得S△EOP=4S△CDO,若存在,求出点E的坐标;若不存在,请说明理由.
参考答案
1.相交 2.60 3.如OA⊥PA,OB⊥PB,AB⊥OP等. 4.0≤d<4. 5.65°
6. 146°,60°,86° 7.A 8.B 9.C 10.C 11.D 12.B
13.(1)AD⊥CD.理由:连接OC,则OC⊥CD.
∵OA=OC,∴∠OAC=∠OCA,
又∠OAC= ∠DAC,∴∠DAC=∠OCA,∴AD∥OC,∴AD⊥CD.
(2)连接BC,则∠ACB=90°由(1)得∠ADC=∠ACB,
又∠DAC=∠CAB.∴△ACD∽△ABC,
∴
,即AC2=AD·AB=80,故AC=
.
14.(1)相等.理由:连接OA,则∠PAO=90°.
∵OA=OB,∴∠OAB=∠B=30°, ∴∠AOP=60°,∠P=90°-60°=30°,
∴∠P=∠B,∴AB=AP,
(2)∵tan∠APO=
,
∴OA=PA,
tan∠APO=
,
∴BC=2OA=2,即半圆O的直径为2.
15.(1)平分.证明:连接OT,∵PT切⊙O于T,
∴OT⊥PT,故∠OTA=90°,
从而∠OBT=∠OTB=90°-∠ATB=∠ABT.即BT平分∠OBA.
(2)过O作OM⊥BC于M,则四边形OTAM是矩形,
故OM=AT=4,AM=OT=5.在Rt△OBM中, OB=5,OM=4,
故BM=
=3,从而AB=AM-BM=5-3=2.
16.作出△ABC的内切圆⊙O,沿⊙O的圆周剪出一个圆,其面积最大.
17.由已知得:OA=OE,∠OAC=∠OEC,又OC公共,故△OAC≌OEC,
同理,△OBD ≌△OED,由此可得∠AOC=∠EOC,∠BOD=∠EOD,
从而∠COD=90°,∠AOC=∠BDO.
根据这些写如下结论:
①角相等:∠AOC=∠COE=∠BDO=∠EDO,∠ACO=∠ECO=∠DOE=∠DOB,
∠A=∠B=∠OEC=∠OED,
②边相等:AC=CE,DE=DB,OA=OB=OE;
③全等三角形:△OAC≌△OEC,△OBD≌△OED;
④相似三角形:△AOC∽△EOC∽△EDO∽△BDO∽△ODC.
18.
(1)PC与⊙D相切,理由:令x=0,得y=-8,故P(0,-8);令y=0,得x=-2
,
故C(-2
,0),故OP=8,OC=2
,CD=1,
∴CD=
=3,
又PC=
,
∴PC2+CD2=9+72=81=PD2.
从而∠PCD=90°,故PC与⊙D相切.
(2)存在.点E(
,-12)或(-
,-4),使S△EOP=4S△CDO.
设E点坐标为(x,y),过E作EF⊥y轴于F,则EF=│x│.
∴S△POE=
PO·EF=4│x│.
∵S△CDO=
CO·DO=
.
∴4│x│=4
,│x│=
,x=±
,
当x=-
时,y=-2
×(-
)-8=-4
;
当x=
时,y=-2
×
-8=-12
.
故E点坐标为(-
,-4)或(
,-12).
- 1【354787】初一期末试卷一
- 2【354786】初一期末试卷五
- 3【354785】初一期末试卷四
- 4【354784】初一期末试卷三
- 5【354783】初一期末试卷二
- 6【350123】第6章 知识点梳理
- 7【350122】第5章 知识点梳理
- 8【350121】第4章 知识点梳理
- 9【350120】第3章 知识点梳理
- 10【350119】第2章 知识点梳理
- 11【350118】第1章 知识点梳理
- 12【350117】6.2 方差
- 13【350116】6.1.3 众数
- 14【350115】6.1.2 中位数
- 15【350114】6.1.1 第2课时 加权平均数
- 16【350112】5.3 图形变换的简单应用
- 17【350113】6.1.1 第1课时 平均数
- 18【350111】5.2 旋转
- 19【350110】5.1.2 轴对称变换
- 20【350109】5.1.1 轴对称图形
- 【350108】4.6 两条平行线间的距离
- 【350107】4.5 第2课时 垂线段与点到直线的距离
- 【350106】4.5 第1课时 垂线
- 【350105】4.4 第2课时 平行线的判定方法2,3
- 【350104】4.4 第1课时 平行线的判定方法1
- 【350103】4.3 平行线的性质
- 【350102】4.2 平移
- 【350101】4.1.2 相交直线所成的角
- 【350100】4.1.1 相交与平行
- 【350099】3.3 第2课时 利用完全平方公式进行因式分解
- 【350098】3.3 第1课时 利用平方差公式进行因式分解
- 【350097】3.2 第2课时 提多项式公因式
- 【350096】3.2 第1课时 提单项式公因式
- 【350095】3.1 多项式的因式分解
- 【350094】2.2.3 运用乘法公式进行计算
- 【350093】2.2.2 第2课时 运用完全平方公式进行计算
- 【350092】2.2.2 第1课时 完全平方公式
- 【350091】2.2.1 平方差公式
- 【350090】2.1.4 第2课时 多项式与多项式相乘
- 【350089】2.1.4 第1课时 单项式与多项式相乘