【350096】3.2 第1课时 提单项式公因式
3.2 提公因式法
第1课时 提单项式公因式
学习目标:
1.能确定多项式各项的公因式,会用提公因式法把多项式分解因式;
2.使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解;
3.培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.
重点:掌握用提公因式法把多项式分解因式,难点:正确地确定多项式的最大公因式.
预习导学——不看不讲
学一学:阅读教材P59-60
说一说:下列从左到右的变形是否是因式分解,为什么?
(1)2x2+4=2(x2+2); (2)2t2-3t+1= (2t3-3t2+t);
(3)x2+4xy-y2=x(x+4y)-y2; (4)m(x+y)=mx+my;
知识点一、提公因式法 的概念
学一学:
多项式 中各项含有相同因式吗?,它们共有的因式是什么?请将上述多项式分别写成两个因式的乘积的形式,并说明理由
议一议:1.多项式mn+mb中各项含有相同因式吗?
2.多项式4x2-x和xy2-yz-y呢?
【归纳总结】如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.
选一选:
多项式-6ab2+18a2b2-12a3b2c的公因式是( )
A.-6ab2c B.-ab2 C.-6ab2 D.-6a3b2c
填一填:在下列括号内填写适当的多项式
(1) ( )
(2) ( )
知识点二、用提公因式法因式分解
提问: 多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么?
师生共识:提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式。
提公因式法关键是如何找公因式.方法是:一看系数、二看字母.公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.
【课堂展示】【例】把-4x2yz-12xy2z+4xyz分解因式.
解:-4x2yz-12xy2z+4xyz
=-(4x2yz+12xy2z-4xyz)
=-4xyz(x+3y-1)
合作探究——不议不讲
互动探究一:P59例题1
互动探究二:P60例题2
互动探究三:P60例题3
【当堂检测】:
1.说出下列多项式中各项的公因式
(1)
(2)
(3) (m,n均为大于1的整数)
2. 用简便的方法计算:0.84×12+12×0.6-0.44×12.
3.把下列多项式因式分解
(1) (2)
(3)
www.ishijuan.cn 爱试卷为中小学老师学生提供免费的试卷下载关注”试卷家“微信公众号免费下载试卷
- 1【354787】初一期末试卷一
- 2【354786】初一期末试卷五
- 3【354785】初一期末试卷四
- 4【354784】初一期末试卷三
- 5【354783】初一期末试卷二
- 6【350123】第6章 知识点梳理
- 7【350122】第5章 知识点梳理
- 8【350121】第4章 知识点梳理
- 9【350120】第3章 知识点梳理
- 10【350119】第2章 知识点梳理
- 11【350118】第1章 知识点梳理
- 12【350117】6.2 方差
- 13【350116】6.1.3 众数
- 14【350115】6.1.2 中位数
- 15【350114】6.1.1 第2课时 加权平均数
- 16【350112】5.3 图形变换的简单应用
- 17【350113】6.1.1 第1课时 平均数
- 18【350111】5.2 旋转
- 19【350110】5.1.2 轴对称变换
- 20【350109】5.1.1 轴对称图形
- 【350108】4.6 两条平行线间的距离
- 【350107】4.5 第2课时 垂线段与点到直线的距离
- 【350106】4.5 第1课时 垂线
- 【350105】4.4 第2课时 平行线的判定方法2,3
- 【350104】4.4 第1课时 平行线的判定方法1
- 【350103】4.3 平行线的性质
- 【350102】4.2 平移
- 【350101】4.1.2 相交直线所成的角
- 【350100】4.1.1 相交与平行
- 【350099】3.3 第2课时 利用完全平方公式进行因式分解
- 【350098】3.3 第1课时 利用平方差公式进行因式分解
- 【350097】3.2 第2课时 提多项式公因式
- 【350096】3.2 第1课时 提单项式公因式
- 【350095】3.1 多项式的因式分解
- 【350094】2.2.3 运用乘法公式进行计算
- 【350093】2.2.2 第2课时 运用完全平方公式进行计算
- 【350092】2.2.2 第1课时 完全平方公式
- 【350091】2.2.1 平方差公式
- 【350090】2.1.4 第2课时 多项式与多项式相乘
- 【350089】2.1.4 第1课时 单项式与多项式相乘