确定圆的条件
一、填空题:
1.锐角三角形的外心在_______.如果一个三角形的外心在它的一边的中点上, 则该三角形是______.如果一个三角形的外心在它的外部,则该三角形是_____.
2.边长为6cm的等边三角形的外接圆半径是________.
3.△ABC的三边为2,3, ,设其外心为O,三条高的交点为H,则OH的长为_____.
4.三角形的外心是______的圆心,它是_______的交点,它到_______的距离相等.
5.已知⊙O的直径为2,则⊙O的内接正三角形的边长为_______.
6.如图,MN所在的直线垂直平分线段AB,利用这样的工具,最少使用________ 次就可以找到圆形工件的圆心.
二 、选择题:
7.下列条件,可以画出圆的是( )
A.已知圆心 B.已知半径
C.已知不在同一直线上的三点 D.已知直径
8.三角形的外心是( )
A.三条中线的交点 B.三条边的中垂线的交点
C.三条高的交点 D.三条角平分线的交点
9.下列命题不正确的是( )
A.三点确定一个圆 B.三角形的外接圆有且只有一个
C.经过一点有无数个圆 D.经过两点有无数个圆
10.一个三角形的外心在它的内部,则这个三角形一定是( )
A.等腰三角形 B.直角三角形; C.锐角三角形 D.等边三角形
11.等腰直角三角形的外接圆半径等于( )
A.腰长 B.腰长的 倍; C.底边的 倍 D.腰上的高
12.平面上不共线的四点,可以确定圆的个数为( )
A.1个或3个 B.3个或4个
C.1个或3个或4个 D.1个或2个或3个或4个
三、解答题:
13.如图,已知:线段AB和一点C(点C不在直线AB上),求作:⊙O,使它经过A、B、C三点。(要求:尺规作图,不写法,保留作图痕迹)
14.如图,A、B、C三点表示三个工厂,要建立一个供水站, 使它到这三个工厂的距离相等,求作供水站的位置(不写作法,尺规作图,保留作图痕迹).
15.如图,已知△ABC的一个外角∠CAM=120°,AD是∠CAM的平分线,且AD与△ABC的外接圆交于F,连接FB、FC,且FC与AB交于E.
(1)判断△FBC的形状,并说明理由.
(2)请给出一个能反映AB、AC和FA的数量关系的一个等式,并说明你给出的等式成立.
16.要将如图所示的破圆轮残片复制完成,怎样确定这个圆轮残片的圆心和半径?(写出找圆心和半径的步骤).
17.已知:AB是⊙O中长为4的弦,P是⊙O上一动点,cos∠APB= , 问是否存在以A、P、B为顶点的面积最大的三角形?若不存在,试说明理由;若存在,求出这个三角形的面积.
18.如图,在钝角△ABC中,AD⊥BC,垂足为D点,且AD与DC的长度为x2-7x+12=0的两个根(AD<DC),⊙O为△ABC的外接圆,如果BD的长为6,求△ABC的外接圆⊙O的面积.
参考答案
1.三角形内部 直角三角形 钝角三角形 2.2 3.
4.其外接圆 三角形三条边的垂直平分线 三角形三个顶点
5. 6.两 7.C 8.B 9.A 10.C 11.B 12.C
13.略.
14.略.
15.(1)△FBC是等边三角形,由已知得:
∠BAF=∠MAD=∠DAC=60°=180°-120°=∠BAC,
∴∠BFC=∠BAC=60°,∠BCF=∠BAF=60°,
∴△FBC是等边三角形.
(2)AB=AC+FA.在AB上取一点G,使AG=AC,则由于∠BAC=60°,
故△AGC是等边三角形,
从而∠BGC=∠FAC=120°,
又∠CBG=∠CFA,BC=FC,
故△BCG≌△FCA,
从而BG=FA,又AG=AC,
∴AC+FA=AG+BG=AB.
【探究创新】
16.(1)在残圆上任取三点A、B、C
(2)分别作弦AB、AC的垂直平分线, 则这两垂直平分线的交点即是所求的圆心
(3)连接OA,则OA的长即是残圆的半径.
17.存在.∵AB不是直径(否则∠APB=90°,而由cos∠APB= 知∠APB<90°,矛盾)
∴取优弧 的中点为P点,过P作PD⊥AB于D,
则PD是圆上所有的点中到AB 距离最大的点.
∵AB的长为定值,
∴当P为优弧 的中点时,△APB的面积最大,连接PA、PB,
则等腰三角形APB即为所求.
由作法知:圆心O必在PD上,如图所示,连接AO,则由垂径定理得
AD= AB=2.
又∠AOD=∠1+∠2,而∠2=∠3,∠1=∠2
故∠AOD=∠2+∠1=∠2+∠3=∠APB,即cos∠AOD= cos∠APB,
∴cos∠AOD= ,设OD=x,OA=3x,则AD= ,
即 =2 ,故x= ,
∴AO=3x= ,OD=x= ,
∴PD=OP+OD= OA+OD= + =2 ,
∴S△APB= AB·PD=4 .
18.过O作OE⊥AB于E,连接OB,则∠AOE= ∠AOB,AE= AB,
∴∠C= ∠AOB=∠AOE.
解方程x2-7x+12=0可得DC=4,AD=3,
故AB= ,AE= ,
可证Rt△ADC∽Rt△AEO,
故 ,
又AC= =5, AD=3,AE= ,
故AO= ,
从而S⊙O= .