确定圆的条件
班级 姓名 学号
学习目标
1.经历不在同一直线上的三点确定一个圆的探索过程.
2.了解不在同一直线上的三点确定一个圆,了解三角形的外接圆、三角形的外心、圆的外接三角形的概念.
3.会过不在同一直线上的三点作圆.
学习重点:确定圆的条件.
学习难点:不在同一直线上的三点确定一个圆的探索过程.
教学过程
情境创设
1、确定一个圆需要哪两个要素?
2、经过一点可以作多少条直线?经过两点可以作多少条直线?经过三点可以作多少条直线?那么几点可以确定一条直线?类似地,几点可以确定一个圆呢?
探究学习
1.尝试
(1)分别讨论过一点、两点、三点分别可以作几个圆?
(2)经过一点可以作多少个圆?
如何确定圆心、半径?
(3)经过两点可以作多少个圆?
如何确定圆心、半径?
(4)经过三点可以作多少个圆?
如何确定圆心、半径?
2.总结:不在同一直线上的三点确定一个圆
三角形的外接圆、三角形的外心、圆的外接三角形的概念
3.画一画
作锐角三角形ABC的外心
4.总结
三角形外心的位置
(1)由“3” ,锐角三角形ABC的外心在△ABC的 部;
(2)三角形按角分类,可以分为哪几类?
(3)分别画直角三角形、钝角三角形的外心,你有什么发现?
5.典型例题
例1.已知锐角三角形ABC,用直尺和圆规作三角形ABC的外接圆。
例2.填空:(1) 是⊙O的_________三角形;
(2)⊙O 是 的_________圆,
6.巩固练习
判断:
(1)经过三点一定可以作圆;( )
(2)任意一个三角形一定有一个外接圆,并且只有一个外接圆;( )
(3)任意一个圆一定有一个内接三角形,并且只有一个内接三角形;( )
(4)三角形的外心是三角形三边中线的交点;( )
(5)三角形的外心到三角形各项点距离相等.( )
选择:
钝角三角形的外心在三角形( )
(A)内部 (B)一边上
(C)外部 (D)可能在内部也可能在外部
归纳总结
1.探索过一点、两点的圆、不在同一直线上的三点确定一个圆;
2.了解三角形的外接圆、三角形的外心、圆的外接三角形的概念;
3.学会过不在同一直线上的三点作圆.
【课后作业】
班级 姓名 学号
1.经过一点作圆可以作 个圆;经过两点作圆可以作 个圆,这些圆的圆心在这两点的 上;经过 的三点可以作 个圆,并且只能作 个圆。
2.一个三角形能画 个外接圆,一个圆中有 个内接三角形。
3. 三角形的外心是三角形的 的圆心,它是三角形的 的交点,它到 的距离相等。
4. Rt⊿ABC中,∠C=900,AC=6cm,BC=8cm,则其外接圆的半径为 。
5.已知AB=7cm,则过点A,B,且半径为3cm的圆有( )
A 0个 B 1个 C 2个 D 无数个
6.等边三角形的边长为a,则其外接圆的半径为 .
7.如图,平原上有三个村庄A,B,C,现计划打一水井P,使水井到三个村庄的距离相等。在图中画出水井P的位置。
.A
.B
C.
8.在Rt△ABC中,∠C=90°,若AC=6,BC=8.求Rt△ABC的外接圆的半径和面积。