【332369】2.5 二次函数与一元二次方程(2)
2.5 二次函数与一元二次方程
1.求下列二次函数的图像与x轴的交点坐标,并作草图验证.
(1)y=
x2+x+1;
(2)y=4x2-8x+4;
(3)y=-3x2-6x-3; (4)y=-3x2-x+4
2.一元二次方程x2+7x+9=1的根与二次函数y=x2+7x+9的图像有什么关系? 试把方程的根在图像上表示出来.
3.利用二次函数的图像求下列一元二次方程的根.
(1)4x2-8x+1=0; (2)x2-2x-5=0;
(3)2x2-6x+3=0; (3)x2-x-1=0.
4.已知二次函数y=-x2+4x-3,其图像与y轴交于点B,与x轴交于A, C 两点. 求△ABC的周长和面积.
5.在体育测试时,初三的一名高个子男生推铅球,已知铅球所经过的路线是某二次函数图像的一部分(如图),若这个男生出手处A点的坐标为(0,2),铅球路线的最高处B点的坐标为B(6,5).
(1)求这个二次函数的表达式;
(2)该男生把铅球推出去多远?(精确到0.01米).
6.如图,已知抛物线y=-x2+bx+c与x轴的两个交点分别为A(x1,0),B(x2,0)
, 且x1+x2=4,
.
(1)求抛物线的代数表达式;
(2)设抛物线与y轴交于C点,求直线BC的表达式;
(3)求△ABC的面积.
7.试用图像法判断方程x2+2x=-
的根的个数.
参考答案
1.(1)没有交点;(2)有一个交点(1,0);(3)有一个交点(-1,0);(4)有两个交点(
1,0),(
,0),草图略.
2.该方程的根是该函数的图像与直线y=1的交点的横坐标.
3.(1)x1≈1.9,x2≈0.1;(2)x1≈3.4,x2≈-1.4;(3)x1≈2.7,x2≈0.6;(4)x1≈1.6,x2≈-0 .6
4.令x=0,得y=-3,故B点坐标为(0,-3).
解方程-x2+4x-3=0,得x1=1,x2=3.
故A、C两点的坐标为(1,0),(3,0).
所以AC=3-1=2,AB=
,BC=
,
OB=│-3│=3.
C△ABC=AB+BC+AC=
.
S△ABC=
AC·OB=
×2×3=3.
5.(1)设y=a(x-6)2+5,则由A(0,2),得2=a(0-6)2+5,得a=
.
故y=
(x-6)2+5.
(2)由
(x-6)2+5=0,得x1=
.
结合图像可知:C点坐标为(
,0)
故OC=
≈13.75(米)
即该男生把铅球推出约13.75米.
6.(1)解方程组
,
得x1=1,x2=3.
故
,解这个方程组,得b=4,c=-3.
所以,该抛物线的代数表达式为y=-x2+4x-3.
(2)设直线BC的表达式为y=kx+m.
由(1)得,当x=0时,y=-3,故C点坐标为(0,-3).
所以
,
解得
∴直线BC的代数表达式为y=x-3
(3)由于AB=3-1=2,OC=│-3│=3.
故S△ABC=
AB·OC=
×2×3=3.
7.只有一个实数根.
- 1【354787】初一期末试卷一
- 2【354786】初一期末试卷五
- 3【354785】初一期末试卷四
- 4【354784】初一期末试卷三
- 5【354783】初一期末试卷二
- 6【350123】第6章 知识点梳理
- 7【350122】第5章 知识点梳理
- 8【350121】第4章 知识点梳理
- 9【350120】第3章 知识点梳理
- 10【350119】第2章 知识点梳理
- 11【350118】第1章 知识点梳理
- 12【350117】6.2 方差
- 13【350116】6.1.3 众数
- 14【350115】6.1.2 中位数
- 15【350114】6.1.1 第2课时 加权平均数
- 16【350112】5.3 图形变换的简单应用
- 17【350113】6.1.1 第1课时 平均数
- 18【350111】5.2 旋转
- 19【350110】5.1.2 轴对称变换
- 20【350109】5.1.1 轴对称图形
- 【350108】4.6 两条平行线间的距离
- 【350107】4.5 第2课时 垂线段与点到直线的距离
- 【350106】4.5 第1课时 垂线
- 【350105】4.4 第2课时 平行线的判定方法2,3
- 【350104】4.4 第1课时 平行线的判定方法1
- 【350103】4.3 平行线的性质
- 【350102】4.2 平移
- 【350101】4.1.2 相交直线所成的角
- 【350100】4.1.1 相交与平行
- 【350099】3.3 第2课时 利用完全平方公式进行因式分解
- 【350098】3.3 第1课时 利用平方差公式进行因式分解
- 【350097】3.2 第2课时 提多项式公因式
- 【350096】3.2 第1课时 提单项式公因式
- 【350095】3.1 多项式的因式分解
- 【350094】2.2.3 运用乘法公式进行计算
- 【350093】2.2.2 第2课时 运用完全平方公式进行计算
- 【350092】2.2.2 第1课时 完全平方公式
- 【350091】2.2.1 平方差公式
- 【350090】2.1.4 第2课时 多项式与多项式相乘
- 【350089】2.1.4 第1课时 单项式与多项式相乘