【332337】2.3 确定二次函数的表达式
2.3 确定二次函数的表达式
类型一:已知顶点和另外一点用顶点式
已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9),求这个二次函数关系式.
练习:
已知抛物线的顶点是(-1,-2),且过点(1,10),求其解析式
类型二:已知图像上任意三点(现一般有一点在y轴上)用一般式
已知二次函数的图象过(0,1)、(2,4)、(3,10)三点,求这个二次函数的关系式.
练习:
已知抛物线过三点:(-1,2),(0,1),(2,-7).求解析式
类型三:已知图像与x轴两个交点坐标和另外一点坐标,用两根式
已知二次函数的图象过(-2,0)、(4,0)、(0,3)三点,求这个二次函数的关系式.
练习:
已知抛物线过三点:(-1,0)、(1,0)、(0,3).
.求这条抛物线所对应的二次函数的关系式;
写出它的开口方向、对称轴和顶点坐标;
(3)这个函数有最大值还是最小值?这个值是多少?
巩固练习:
1.已知二次函数的图象过(3,0)、(2,-3)二点,且对称轴是x=1,求这个二次函数的关系式.
2..已知二次函数的图象过(3,-2)、(2,-3)二点,且对称轴是x=1,求这个二次函数的关系式.
3.已知二次函数的图象与x轴交于A,B两点,与y轴交于点C。若AC=20,BC=15,
∠ACB=90°,试确定这个二次函数的解析式
4.已知一个二次函数当x=8时,函数有最大值9,且图象过点(0,1),求这个二次函数的关系式.
小测:
二次函数y=x2-2x-k的最小值为-5,则解析式为 。
2.若一抛物线与
轴两个交点间的距离为8,且顶点坐标为(1,
5),则它们的解析式为
。
3.已知一个二次函数的图象经过点(6,0),且抛物线的顶点是(4,-8),求它的解析式。
4.已知二次函数y=ax2+bx+c的图象顶点坐标为(-2,3),且过点(1,0),求此二次函数的解析式.
已知二次函数y=ax2+bx+c,当x=-1时有最小值-4,且图象在x轴上截得线段长为4,求函数解析式.
抛物线y=ax2+bx+c经过(0,0),(12,0)两点,其顶点的纵坐标是3,求这个抛物线的解析式.
已知二次函数y=ax2+bx+c,当 x=0时,y=0;x=1时,y=2;x=-1时,y=1.求a、b、c,并写出函数解析式.
8.已知抛物线y=ax2经过点A(2,1).
(1)求这个函数的解析式;
(2)写出抛物线上点A关于y轴的对称点B的坐标;
(3)求△OAB的面积;
(4)抛物线上是否存在点C,使△ABC的面积等于△OAB面积的一半,若存在,求出C点的坐标;若不存在,请说明理由.
- 1【354787】初一期末试卷一
- 2【354786】初一期末试卷五
- 3【354785】初一期末试卷四
- 4【354784】初一期末试卷三
- 5【354783】初一期末试卷二
- 6【350123】第6章 知识点梳理
- 7【350122】第5章 知识点梳理
- 8【350121】第4章 知识点梳理
- 9【350120】第3章 知识点梳理
- 10【350119】第2章 知识点梳理
- 11【350118】第1章 知识点梳理
- 12【350117】6.2 方差
- 13【350116】6.1.3 众数
- 14【350115】6.1.2 中位数
- 15【350114】6.1.1 第2课时 加权平均数
- 16【350112】5.3 图形变换的简单应用
- 17【350113】6.1.1 第1课时 平均数
- 18【350111】5.2 旋转
- 19【350110】5.1.2 轴对称变换
- 20【350109】5.1.1 轴对称图形
- 【350108】4.6 两条平行线间的距离
- 【350107】4.5 第2课时 垂线段与点到直线的距离
- 【350106】4.5 第1课时 垂线
- 【350105】4.4 第2课时 平行线的判定方法2,3
- 【350104】4.4 第1课时 平行线的判定方法1
- 【350103】4.3 平行线的性质
- 【350102】4.2 平移
- 【350101】4.1.2 相交直线所成的角
- 【350100】4.1.1 相交与平行
- 【350099】3.3 第2课时 利用完全平方公式进行因式分解
- 【350098】3.3 第1课时 利用平方差公式进行因式分解
- 【350097】3.2 第2课时 提多项式公因式
- 【350096】3.2 第1课时 提单项式公因式
- 【350095】3.1 多项式的因式分解
- 【350094】2.2.3 运用乘法公式进行计算
- 【350093】2.2.2 第2课时 运用完全平方公式进行计算
- 【350092】2.2.2 第1课时 完全平方公式
- 【350091】2.2.1 平方差公式
- 【350090】2.1.4 第2课时 多项式与多项式相乘
- 【350089】2.1.4 第1课时 单项式与多项式相乘