当前位置:首页 > 七年级 > 数学试卷

【332256】1.2二次函数的图象与性质(5)

时间:2025-01-21 12:31:16 作者: 字数:5593字
简介:

 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 1.2二次函数的图象与性质(五)

教学目标

1.利用配方法将二次函数y=ax2+bx+c化为函数y=a(x-h)2+k的形式.

2.掌握二次函数y=ax2+bx+c的图象画法[来源:学科ZXXK]

3. 通过图象了解二次函数y=ax2+bx+c的性质,会求 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 其最大(小)值.

教学重点、难点

重点:用配方法确定抛物线y=ax2+bx+c的顶点和对称轴.
难点:用配方法将y=ax2+bx+c转化为y=a(x-h)2+k的形式,画出其函数图象.

教学设计

.预习导学

学生通过自主预习P15-P17完成下列各题:

1. <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 二次函数y=ax2+bx+c的对称轴是直线x=- <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> ,顶点是- <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>  <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> .

2. 二次函数的一般式y=ax2+bx+c可以用配方法化成y=a(x-h)2+k的形式,也可以利用公式h=- <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> k= <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> y=ax2+bx+c化成y=a(x-h)2+k的形式.

3.当a0时,函数y有最小值,即当x=- <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 时,y最小值=  <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> ;当a0时,函数y有最大值,即当x=- <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 时,y最大值= <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> .[来源:,,Z,X,X,K]

设计意图: 通过学生自主预习教材,初步理解掌握利用配方法将二次函数y=ax2+bx+c <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 为函数y=a(x-h)2+k的形式的方法,学会画其图象,了解其性质,培养学生的自学能力.

.探究展示

()合作探究 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>

1.如何画二次函数y=-2x2+6x-1 的图象?[来源:**Z*X*X*K]

分析:我们已经会画y=a(x-h)2+k的图象.因此只需把-2x2+6x-1配方成-2(x-h)2+k的形式就可以了.

配方:y=-2x2+6x-1

= -2x2+3x-1

=-2x2+3x+ <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 2- <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 2 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> -1

= -2x+ <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 2 +2× <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> -1

=-2x+ <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 2 + <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>

故对称轴是直线 x=- <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> ,顶点坐标是(- <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>  <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> .

列表:自变量x从顶点的横坐标- <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 开始取值.

x

 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> [来源:||]

2

 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>

3

 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>

y=-2x2+6x-1

 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>

3

 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>

-1

- <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>


描点和连线:画出图象在对称轴右边的部分.

利用对称性,画出图象在对称轴左边的部分,这样就得到了函数y=-2x2+6x-1的图象.

 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>

总结:在画二次函数y=ax2+bx+c的图象时,通常先通过 配方  <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> ,将其变 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 形为y=a(x-h)2+k 的形式,再确定顶点(- <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>  <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> ),然后以顶点开始取值并列表,最后画出函数图象.

2.观察上图,当x等于多少时,函数y=-2x2+6x-1的值最大,这个最大值是多少?

x等于顶点的横坐标 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 时,函数值最大;这个最大值等于顶点的纵坐标 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> .

一般的,有下述结论:

二次函数y=ax2+bx+c,当x等于顶点的横坐标时,达到最大值(a0)或最小值 (a0),这个最大()值等于顶点的纵坐标.

二次函数y=ax2+bx+c的顶点坐标是- <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>  <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> ,对称轴是,当a0时,开口向上,当a0时,开口向下,a0时,在对称轴的左边,yx的增大而减小,在对称轴的右边,yx的增 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 大而增大;a0时,在对称轴的左边,yx的增大而增大,在对称轴的右边,yx的增大而减小.

设计意图:通过探究,进一步理解掌握利用配方法将二次函数y=ax2+bx+c化为函数 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> y=a(x-h)2+k的形式的方法,学会画其图象,让学生利用数形结合的方法研究其性质,进一步得出图象的画法.培养学生通过解决问题的能力.

()展示提升

1.求二次函数y=- <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> x2+2x-1的最大值. <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>

2.已知二次函数y=x2-m-1x+(m+1)的图象经过(2,0),

1)求m的值;

2 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> )求此二次函数的顶点坐标;

3)设此二次函数的图象与x轴的交点为ABAB的左侧),求出点A、点B的坐标.

设计意图: 可点名 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 展示,也可分组展示,培养学生分析问题的能力;同时增强学生团结协作的精神。老师在此环节准确引导,及时点拨和追问,总结出解决问题的方法和规律。

.知识梳理

以”本节课我们学到了什么?”启发学生谈谈本节课的收获.

1.二次函数y=ax2+bx+c进行配方:y=ax2+bx+c=ax+- <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 2+ <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 顶点坐标是- <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>  <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> ),当x=- <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 时,函数达到最大值(a0)或最小值 (a0) <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> .

2. 在画二次函数y=ax2+bx+c的图象时,通常先通过 配方 将其变形为y=a(x-h)2+k 的形式,再确定顶点(- <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>  <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> ),然后以顶点开始取值并列表,最后画出函数图象.

3. 二次函数y=ax2+bx+c的性质: <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 次函数y=ax2+bx+c的顶点坐标是- <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>  <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> ,对称轴是x=- <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> ,当a0时,开口向上,当a0时,开口向下,a <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 0时,在对称轴的左边,yx的增大而减小,在对称轴的右边,yx的增大而增大;a0时,在对称轴的左边,yx的增大而增大,在对称轴的右边,yx的增大而减小.

.当堂检测

1.写出下列二次函数图象的对称轴、顶点坐标和开口方向,并画出它们的图象.

1 y=3x2-6x+1 2 y=- <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> x2+x+1

2. 求下列二次函数的图象的顶点坐标:

1 y=x2-3x+2  <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 2 y=- <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> x2-2x+1

3. 用配方法求第2题中各个二次函数的最大值或最小值.

.教学反思

这节课,我对教材进行了探究性重组,同时放手让学生在探究活动中去经历、体验、内化知识.通过充分的过程探究,学生容易得出也是最早得出了图象的性质,借助直观图象的性质而得到二次函数的性质.花费了一番周折,说明去掉这个中介,直接让学生从单调性来接受二次函数性质是困难的.