【324483】2024春七年级数学下册 专题2.3 二元一次方程组的应用-鸡兔同笼、牛羊值金球赛积分
专题2.3
二元一次方程组的应用-鸡兔同笼、牛羊值金球赛积分问题(专项训练)
1.(沭阳县期末)现有100元和20元的人民币共33张,总面额1620元.则其中面额100元的人民币有( )
A.12张 B.14张 C.20张 D.21张
【答案】A
【解答】解:设100元的人民币为x张,20元的人民币y张,根据题意得:
,
解得:
,
即面额100的人民币有12张.故选A
2.《孙子算经》是我国古代经典数学名著,其中有一道“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何?”学了方程(组)后,我们可以非常顺捷地解决这个问题.如果设鸡有x只,兔有y只,那么可列方程组为( )
A.
B.
C.
D.
【答案】D
【解答】解:设鸡有x只,兔有y只,可列方程组为:
.
故选:D.
3.(惠东县校级期末)罗浮山是国家级风景名胜区和国家AAAAA级旅游景区,某校组织七年级540名学生参加社会实践,现租用大、小两种客车共10辆,恰好能一次性运完全部学生.已知一辆小客车限载40人,一辆大客车限载60人,求这两种客车各租用多少辆?
【解答】解:设大客车租用x辆,小客车租用y辆,
依题意得:
,
解得:
.
答:大客车租用7辆,小客车租用3辆.
4.《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的
,那么乙也共有钱48文.甲、乙两人原来各有多少钱?
【解答】解:设甲原有x文钱,乙原有y文钱,
由题意可得,
,
解得:
,
答:甲原有36文钱,乙原有24文钱
5.(西湖区校级月考)通过对某校营养午餐的检测,得到如下信息:每份营养午餐的总质量400g;午餐的成分为蛋白质、碳水化合物、脂肪和矿物质,其中碳水化合物和矿物质占45%,矿物质的含量是脂肪含量的1.5倍,蛋白质和碳水化合物含量占80%.
(1)设其中蛋白质含量是x(g),脂肪含量是y(g),请用含x或y的代数式分别表示碳水化合物和矿物质的质量.
(2)求每份营养午餐中蛋白质、碳水化合物、脂肪和矿物质的质量.
【解答】解:(1)由题可知,矿物质的质量为1.5y(g).
碳水化合物的质量为400×45%﹣1.5y=180﹣1.5y(g).
(2)
,
解得
.
蛋白质质量为188g.
碳水化合物质量为180﹣1.5×32=132g,
脂肪质量为32g,矿物质质量为1.5×32=48g.
6.(泗县校级模拟)有甲乙两种铜和银的合金,甲种合金含银25%,乙种合金含银37.5%,现在要熔制含银30%的合金100千克,甲、乙两种合金各应取多少?
【解答】解:设需甲合金的质量为x千克,乙合金的质量为y千克,由题意得:
,
解得:
.
答:甲合金应取60千克,乙合金应取40千克.
7.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《九章算术》卷八方程第七题原文为:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.问牛、羊各直金几何?”题目大意是:现有5头牛和2只羊共值10两金子,2头牛和5只羊共值8两金子,那么每头牛,每只羊各值多少两金子?设1头牛值x两金子,1只羊值y两金子,那么,符合题意的方程组是( )
A.
B.
C.
D.
【答案】B
【解答】解:设1头牛值x两金子,1只羊值y两金子,
由题意可得,
,
故选:B.
8.《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系.其中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛、5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x两,1只羊值金y两,则可列方程组为 .
【答案】
【解答】解:设1头牛值金x两,1只羊值金y两,
由题意可得,
,
故答案为:
.
9.“市长杯”青少年校园足球联赛的比赛规则是:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分.那么该队胜了几场,平了几场?设该队胜了x场,平了y场,根据题意可列方程组为( )
A.
B.
C.
D.
【答案】A
【解答】解:根据题意得:
,
即
,
故选:A.
10.某市举办中学生足球赛,按比赛规则,每场比赛都要分出胜负,胜1场得3分,负一场扣1分,菁英中学队在8场比赛中得到12分,若设该队胜的场数为x,负的场数为y,则可列方程组为( )
A.
B.
C.
D.
【答案】C
【解答】解:依题意得:
.
故选:C.
11.“市长杯”青少年校园足球联赛的比赛规则是:胜一场得3分,平一场得1分,负一场得0分,某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分,那么该队胜了几场,平了几场?设该队胜了x场,平了y场,根据题意可列方程组为 .
【答案】
【解答】解:∵该足球队在第一轮比赛中赛了9场,只负了2场,
∴x+y+2=9;
∵胜一场得3分,平一场得1分,负一场得0分,该足球队在第一轮比赛中共得17分,
∴3x+y=17.
∴所列方程组为
.
故答案为:
.
- 1【354787】初一期末试卷一
- 2【354786】初一期末试卷五
- 3【354785】初一期末试卷四
- 4【354784】初一期末试卷三
- 5【354783】初一期末试卷二
- 6【350123】第6章 知识点梳理
- 7【350122】第5章 知识点梳理
- 8【350121】第4章 知识点梳理
- 9【350120】第3章 知识点梳理
- 10【350119】第2章 知识点梳理
- 11【350118】第1章 知识点梳理
- 12【350117】6.2 方差
- 13【350116】6.1.3 众数
- 14【350115】6.1.2 中位数
- 15【350114】6.1.1 第2课时 加权平均数
- 16【350112】5.3 图形变换的简单应用
- 17【350113】6.1.1 第1课时 平均数
- 18【350111】5.2 旋转
- 19【350110】5.1.2 轴对称变换
- 20【350109】5.1.1 轴对称图形
- 【350108】4.6 两条平行线间的距离
- 【350107】4.5 第2课时 垂线段与点到直线的距离
- 【350106】4.5 第1课时 垂线
- 【350105】4.4 第2课时 平行线的判定方法2,3
- 【350104】4.4 第1课时 平行线的判定方法1
- 【350103】4.3 平行线的性质
- 【350102】4.2 平移
- 【350101】4.1.2 相交直线所成的角
- 【350100】4.1.1 相交与平行
- 【350099】3.3 第2课时 利用完全平方公式进行因式分解
- 【350098】3.3 第1课时 利用平方差公式进行因式分解
- 【350097】3.2 第2课时 提多项式公因式
- 【350096】3.2 第1课时 提单项式公因式
- 【350095】3.1 多项式的因式分解
- 【350094】2.2.3 运用乘法公式进行计算
- 【350093】2.2.2 第2课时 运用完全平方公式进行计算
- 【350092】2.2.2 第1课时 完全平方公式
- 【350091】2.2.1 平方差公式
- 【350090】2.1.4 第2课时 多项式与多项式相乘
- 【350089】2.1.4 第1课时 单项式与多项式相乘