专项1.1 平行线和三线八角
1.(仪征市校级月考)如图,直线AD、BE被直线BF和AC所截,下列说法正确的是( )
A.∠3与∠4是同旁内角 B.∠2与∠5是同位角
C.∠6与∠1是内错角 D.∠2与∠6是同旁内角
【答案】D
【解答】解:A、∠3与∠4是内错角,错误;
B、∠2与∠5不是同位角,错误;
C、∠1与∠6不是同旁内角,错误;
D、∠2与∠6是同旁内角,正确;
故选:D.
2.(江西月考)如图,∠ABD的同旁内角共有( )
A.1个 B.2个 C.3个 D.4个
【答案】D
【解答】解:∠ABD与∠ADB是直线AB、AD,被直线BD所截而成的同旁内角,
∠ABD与∠AEB是直线AB、AC,被直线BD所截而成的同旁内角,
∠ABD与∠BAE是直线AC、BD,被直线AB所截而成的同旁内角,
∠ABD与∠BAD是直线AD、BD,被直线AB所截而成的同旁内角,
故选:D.
3.(宛城区校级期末)如图,直线a、b被直线c所截,则下列式子:①∠1=∠8;②∠1=∠2;③∠3=∠6;④∠5+∠8=180°,能说明a∥b的条件的是( )
A.①② B.②④ C.①②③ D.①②③④
【答案】D
【解答】解:①同位角∠1=∠2;
②内错角∠3=∠6;
③对顶角∠1=∠7,又∠1=∠8,故同位角∠7=∠8;
④∠5+∠8=180°,邻补角∠5+∠7=180°,故同位角∠7=∠8;
四个条件都可以判定a∥b.
故选:D.
4.(东平县期末)在同一平面内,直线a、b、c中,若a⊥b,b∥c,则a、c的位置关系是 .
【答案】c⊥a
【解答】解:∵c∥b,a⊥b,
∴c⊥a.
故答案为c⊥a
5.(满洲里市期末)如图,下列结论:①∠2与∠3是内错角;②∠2与∠B是同位角;③∠A与∠B是同旁内角;④∠A与∠ACB不是同旁内角,其中正确的是 (只填序号).
【答案】①②③
【解答】解:∠2与∠3是直线AB、直线BC,被直线CD所截的一对内错角,因此①符合题意;
∠2与∠B是直线CD、直线BC,被直线AB所截的一对同位角,因此②符合题意;
∠A与∠B是直线AC、直线BC,被直线AB所截的一对同旁内角,因此③符合题意,
∠A与∠ACB是直线AB、直线BC,被直线AC所截的一对同旁内角,因此④不符合题意,
故答案为:①②③.
6.(宁波期中)图中与∠1构成同位角的个数有 个.
【答案】3
【解答】解:如图,由同位角的定义知,能与∠1构成同位角的角有∠2、∠3、∠4,共3个,
故答案为:3.
7.(麻城市校级月考)如图,∠1和∠3是直线 和 被直线 所截而成的 内错 角;图中与∠2是同旁内角的角有 个.
【答案】AB、AC、DE、内错,3.
【解答】解:∠1和∠3是直线AB和AC被直线DE所截而成的内错角;图中与∠2 是同旁内角的角有∠6、∠5、∠7,共3个,
故答案为:AB、AC、DE、内错,3.
8.(青岛期末)将一副三角板如图1所示摆放,直线GH∥MN,现将三角板ABC绕点A以每秒1°的速度顺时针旋转,同时三角板DEF绕点D以每秒2°的速度顺时针旋转,设时间为t秒,如图2,∠BAH=t°,∠FDM=2t°,且0≤t≤150,若边BC与三角板的一条直角边(边DE,DF)平行时,则所有满足条件的t的值为 .
【答案】30或120
【解答】解:由题意得,∠HAC=∠BAH+∠BAC=t°+30°,∠FDM=2t°,
(1)如图1,当DE∥BC时,延长AC交MN于点P,
①DE在MN上方时,
∵DE∥BC,DE⊥DF,AC⊥BC,
∴AP∥DF,
∴∠FDM=∠MPA,
∵MN∥GH,
∴∠MPA=∠HAC,
∴∠FDM=∠HAC,即2t°=t°+30°,
∴t=30,
②DE在MN下方时,∠FDP=2t°﹣180°,
∵DE∥BC,DE⊥DF,AC⊥BC,
∴AP∥DF,
∴∠FDP=∠MPA,
∵MN∥GH,
∴∠MPA=∠HAC,
∴∠FDP=∠HAC,即2t°﹣180°=t°+30°,
∴t=210(不符合题意,舍去),
(2)当BC∥DF时,延长AC交MN于点I,
①DF在MN上方时,BC∥DF,如图,
根据题意得:∠FDN=180°﹣2t°,
∵DF∥BC,AC⊥BC,
∴CI⊥DF,
∴∠FDN+∠MIC=90°,
即180°﹣2t°+t°+30°=90°,
∴t=120,
∴2t=240°>180°,此时DF应该在MN下方,不符合题意,舍去;
②DF在MN下方时,如图,
根据题意可知:∠FDN=2t°﹣180°,
∵DF∥BC,
∴∠MIC=∠NDF,
∴∠NDF=∠AQI=t+30°﹣90°=t﹣60°,
即2t°﹣180°=t°﹣60°,
∴t=120,
综上所述:所有满足条件的t的值为30或120.
故答案为:30或120.
9.(锦江区校级期中)图1是一张足够长的纸条,其中PN∥QM,点A、B分别在PN、QM上,记∠ABM=α(0°<α<90°).如图2,将纸条折叠,使BM与BA重合,得折痕BR1,如图3,将纸条展开后再折叠,使BM与BR1重合,得折痕BR2,将纸条展开后继续折叠,使BM与BR2重合,得折痕BR3…依此类推,第n次折叠后,∠ARnN= (用含a和n的代数式表示)
【答案】180°﹣
【解答】解:由折叠的性质折叠n次可得∠RnBnRn+1= =
在四边形内有四边形的内角和为360°知:∠BRnN=360 =180
∴∠ARnN=∠BRnN﹣∠Rn﹣1RnB=180°﹣ ﹣ =180°﹣ .
故答案为:180°﹣ .
10.(田东县期末)一副透明的直角三角尺,按如图所示的位置摆放.如果把三角尺的每条边看成线段,请根据图形解答下列问题:
(1)找出图中一对互相平行的线段,并用符号表示出来;
(2)找出图中一对互相垂直的线段,并用符号表示出来;
(3)找出图中的一个钝角、一个直角和一个锐角,用符号把它们表示出来,并求出它们的度数.(不包括直角尺自身所成的角)
【解答】解:此题答案不唯一,只要答案正确即可得分.
(1)如:DE∥CB,DF∥CB,FE∥CB.
(2)如:ED⊥AC,FD⊥AC,FD⊥AD.
(3)如:钝角:∠GFD=135°,∠CGB=∠FGE=105°.
直角有:∠ADE=90°.
如:锐角∠GCB=30°,∠AFD=45°,∠CGF=75°.
11.(内乡县期末)如图所示,在∠AOB内有一点P.
(1)过P画l1∥OA;
(2)过P画l2∥OB;
(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样关系?
【解答】解:(1)(2)如图所示,
(3)l1与l2夹角有两个:∠1,∠2;∠1=∠O,∠2+∠O=180°,所以l1和l2的夹角与∠O相等或互补.
12.(浦东新区期末)(1)补全下面图形,使之成为长方体ABCD﹣A1B1C1D1的直观图;
(2)写出既与棱AB异面又与棱DD1平行的棱: ;
(3)长方体ABCD﹣A1B1C1D1的长、宽、高的比是3:2:1,它的所有棱长和是24厘米,那么这个长方体的体积是 立方厘米.
【解答】解:(1)画出图形如图:
(2)既与棱AB异面又与棱DD1平行的棱是CC1;
(3)24÷4=6(厘米),
6× =3(厘米);
6× =2(厘米);
6× =1(厘米).
3×2×1=6(立方厘米).
所以长方体的体积是6立方厘米.
故答案为:CC1,6.
如图所示,同位角一共有 对,分别是 ;内错角一共
有 对,分别是 ;同旁内角一共有 对,分别是 .
【解答】解:同位角一共有6对,分别是∠1和∠5,∠2和∠6,∠3和∠7,∠4和∠8,∠7和∠9,∠4和∠9;内错角一共有4对,分别是∠1和∠7,∠4和∠6,∠5和∠9,∠2和∠9;同旁内角一共有4对,分别是∠1和∠6,∠1和∠9,∠4和∠7,∠6和∠9.
故答案为:6,∠1和∠5,∠2和∠6,∠3和∠7,∠4和∠8,∠7和∠9,∠4和∠9;4,∠1和∠7,∠4和∠6,∠5和∠9,∠2和∠9;4,∠1和∠6,∠1和∠9,∠4和∠7,∠6和∠9.
14.(金牛区期中)将一副三角板中的两块直角三角尺的直角顶点C按如图所示的方式叠放在一起.
(1)若∠DCE=45°,则∠ACB的度数为 ;
(2)若∠ACB=140°,求∠DCE的度数;
(3)猜想∠ACB与∠DCE之间存在什么数量关系?并说明理由;
(4)当∠ACE<90°且点E在直线AC的上方时,这两块三角尺是否存在AD与BC平行的情况?若存在,请直接写出∠ACE的值;若不存在,请说明理由.
【解答】解:(1)∵∠DCE=45°,∠ACD=90°
∴∠ACE=45°
∵∠BCE=90°
∴∠ACB=90°+45°=135°
故答案为:135°;
(2)∵∠ACB=140°,∠ECB=90°
∴∠ACE=140°﹣90°=50°
∴∠DCE=90°﹣∠ACE=90°﹣50°=40°;
(3)猜想:∠ACB+∠DCE=180°
理由如下:∵∠ACE=90°﹣∠DCE
又∵∠ACB=∠ACE+90°
∴∠ACB=90°﹣∠DCE+90°=180°﹣∠DCE
即∠ACB+∠DCE=180°;
(4)30°;
理由:∵∠ACD=∠ECB=90°,
∴∠ACE=∠DCB=30°,
∴∠D=∠DCB=30°,
∴CB∥AD.