2.2 用配方法求解一元二次方程
一、填空题
1. =__________,a2的平方根是__________.
2.用配方法解方程x2+2x-1=0时
①移项得__________________
②配方得__________________
即(x+__________)2=__________
③x+__________=__________或x+__________=__________
④x1=__________,x2=__________
3.用配方法解方程2x2-4x-1=0
①方程两边同时除以2得__________
②移项得__________________
③配方得__________________
④方程两边开方得__________________
⑤x1=__________,x2=__________
二、解答题
1.将下列各方程写成(x+m)2=n的形式
(1)x2-2x+1=0
(2)x2+8x+4=0
(3)x2-x+6=0
2.将下列方程两边同时乘以或除以适当的数,然后再写成(x+m)2=n的形式
(1)2x2+3x-2=0
(2) x2+x-2=0
3.用配方法解下列方程
(1)x2+5x-1=0 (2)2x2-4x-1=0
(3) x2-6x+3=0
参考答案
一、1.|a| ±a
2.x2+2x=1 x2+2x+1=1+1 1 1 1
0 -2
3.x2-2x- =0 x2-2x= x2-2x+1= (x-1)2= +1 - +1
二、1.(1)解:(x-1)2=0
(2)解:x2+8x=-4
x2+8x+16=12
(x+4)2=12
(3)解:x2-x=-6
x2-x+ =-5
(x- )2=-5
2.(1)解:x2+ x-1=0
x2+ x=1
x2+ x+ =1
(x+ )2=
(2)解:x2+4x-8=0
x2+4x=8
x2+4x+4=12
(x+2)2=12
3.(1)解:x2+5x=1
x2+5x+
(x+ )2=
∴x+ =±
∴x1=
(2)解:x2-2x- =0
x2-2x=
x2-2x+1=
(x-1)2=
x-1=±
∴x1= ,x2=
(3)解:x2-24x+12=0
x2-24x=-12
x2-24x+144=132
(x-12)2=132
x-12=±2
∴x1=2 +12,x2=-2 +12