【332289】1.6 利用三角函数测高(2)
1.6 利用三角函数测高
【基础练习】
一、填空题:
1.如图,在高20米的建筑物CD的顶部C测得塔顶A的仰角为60°,测得塔底B的俯角为30°,则塔高AB = 米;
第1题 第2题
2.如图,小明想测量电线杆AB的高度,发现电线杆的影子恰好落在地面BC和斜坡的坡面CD上,测得BC = 10米,CD = 4米,CD与地面成30°角,且此时测得1米杆的影长为2米,则电线杆的高度为
米.
二、选择题:
1.如图,测量人员在山脚A处测得山顶B的仰角为45°,沿着倾角为30°的山坡前进1 000米到达D处,在D处测得山顶B的仰角为60°,则山高BC大约是(精确到0.01米)( );
A. 1 366.00米 B. 1 482.12米 C. 1 295.93米 D. 1 508.21米
第1题 第2题
2.如图,两建筑物的水平距离为a米,从A点测得D点的俯角为α,测得C点的俯角为β. 则较低建筑物CD的高度为( ).
A.
a米
B.
C.
D. a
(tanβ-
tanα)
三、解答题:
1.如图,光明中学九年级(2)班的同学用自己制作的侧倾器测量该校旗杆的高度,已知测倾器CD的高度为1.54米,测点D到旗杆的水平距离BD = 20米,测得旗杆顶A的仰角α= 35°,求旗杆AB的高度(精确到0.01米).
2.如图,小山上有一座铁塔AB,在山脚D处测得点A的仰角为60°,测得点B的仰角为45°,在E处测得点A的仰角为30°(C、D、E在同一条直线上),并测得DE = 90 m,求小山BC和铁塔AB的高(精确到0.1 m).
参考答案
一、1.
80;
2.
7
+
.
二、1.
A;
2.
D.
三、1. 15.54米.
2.小山BC高45 m,铁塔AB高约32.9米.
- 1【354787】初一期末试卷一
- 2【354786】初一期末试卷五
- 3【354785】初一期末试卷四
- 4【354784】初一期末试卷三
- 5【354783】初一期末试卷二
- 6【350123】第6章 知识点梳理
- 7【350122】第5章 知识点梳理
- 8【350121】第4章 知识点梳理
- 9【350120】第3章 知识点梳理
- 10【350119】第2章 知识点梳理
- 11【350118】第1章 知识点梳理
- 12【350117】6.2 方差
- 13【350116】6.1.3 众数
- 14【350115】6.1.2 中位数
- 15【350114】6.1.1 第2课时 加权平均数
- 16【350112】5.3 图形变换的简单应用
- 17【350113】6.1.1 第1课时 平均数
- 18【350111】5.2 旋转
- 19【350110】5.1.2 轴对称变换
- 20【350109】5.1.1 轴对称图形
- 【350108】4.6 两条平行线间的距离
- 【350107】4.5 第2课时 垂线段与点到直线的距离
- 【350106】4.5 第1课时 垂线
- 【350105】4.4 第2课时 平行线的判定方法2,3
- 【350104】4.4 第1课时 平行线的判定方法1
- 【350103】4.3 平行线的性质
- 【350102】4.2 平移
- 【350101】4.1.2 相交直线所成的角
- 【350100】4.1.1 相交与平行
- 【350099】3.3 第2课时 利用完全平方公式进行因式分解
- 【350098】3.3 第1课时 利用平方差公式进行因式分解
- 【350097】3.2 第2课时 提多项式公因式
- 【350096】3.2 第1课时 提单项式公因式
- 【350095】3.1 多项式的因式分解
- 【350094】2.2.3 运用乘法公式进行计算
- 【350093】2.2.2 第2课时 运用完全平方公式进行计算
- 【350092】2.2.2 第1课时 完全平方公式
- 【350091】2.2.1 平方差公式
- 【350090】2.1.4 第2课时 多项式与多项式相乘
- 【350089】2.1.4 第1课时 单项式与多项式相乘