当前位置:首页 > 七年级 > 数学试卷

【332253】1.2二次函数的图象与性质(2)

时间:2025-01-21 12:31:07 作者: 字数:5232字
简介:

 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 1.2二次函数的图象与性质(二)

教学目标

1.能够运用描点法作出函数y=ax2(a0)的图象.

2.能根据图象认识和理解二次函数y=ax2(a <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 0)的性质.

3. 了解y=ax2y=-ax2a≠0)的图象的位置关系.

教学重点、难点

重点:会用描点法画出二次函数y=ax2(a0)的图象.
难点:探索二次函数性质.

教学设计

.预习导学

学生通过自主预习P7-P10完成下列各题.
1. 二次函数y=ax2(a0)的性质有哪些?

2. 二次函数y=ax2(a0)的性质有哪些?

3. 二次函数y=ax2y=-ax2a≠0)的图象由是怎样的位置关系

设计意图: 通过自主预习教材,理解二次函数y=ax2(a0)的图象画法,掌握其性质.

.探究展示

()合作探究

1.我们已经画出了y= <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> x2的图象,能不能从它得出二次函数y=- <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> x2的图象呢?

y= <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> x2的图象上任取一点Pa,  <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> a2,它关于 x轴的对称点Q的坐标是(a, - <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> a2,如下图所示:

 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>

从点Q的坐标看出,点Qy=- <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> x2的图象上

由此可知,y= <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> x2的图象与y=- <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> x2的图象关于x轴对称,因此只要把y= <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> x2的图象沿着x轴翻折并将图象“复印”下来,就得到y=- <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> x2的图象. 如下图中的绿色曲线:

 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>

2. 观察上图,函数y=- <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> x2的图像具有哪些性质?

从图中可以看出,二次函数y=- <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> x2的图象 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 是一条曲线,

图象的开口向,对称轴是 y,对称轴与图象的交点是  <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 原点(00

图象在对称轴左边的部分,函数值随自变量取值的增大 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 增大 ,简称为 左升

图象在对称轴右边的部分,函数值随自变量取值的增大而 减小,简称为 右降

x= 0 时,函数值最,最值为 0

a0时,y=ax2的图象都具有上述性质. 于是今后画y=ax2(a0)的图象时,可以直接先画出图象在y轴右边的部分,然后利用对称性,画出图象在y轴左边的部分.在画右边部分时,只要“列表、描点、连线”三个步骤就可以了.

设计意图:通 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 过探究,可以发现y= <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> x2的图象与y=- <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>  <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> x2的图象关于x轴对称,因此只要把y= <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> x2的图象沿着x轴翻折并将图象“复印”下来,就得到y=- <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> x2的图象.培养学生养成追求科学严谨 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 性的习惯,培养学生利用数形结合的方法研究其性质.

()展示提升

1.画二次函数y=- <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> x2的图象

列表:[来源:&&]

X

0[来源:学科网]

1

2

 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 3[来源:学科网ZXXK]

y=- <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> x2

0

- <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>

-1

- <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>



描点和连线:

 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>

2. 如下图所示,在棒球赛场上,棒球在空中沿着一条曲线运动,它与二次函数y=ax2(a0)的图象相像吗?

 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>

以棒球在空中经过的路线的最高点为原点建立直角坐标系,x轴的正方向水平向右,y轴的正方向竖直向上,则可以看出棒球在空中经过的路线是形如y=ax2(a0)的图象的一段. 由此受到启发,我们把二次函数y=ax2的图象这样的曲线叫作抛物线,简称为抛物线 y=ax2.

一般地,二次函数y=ax2的图象关于 y 轴对称.

抛物线与它的对称轴的交点 原点(0,0叫做抛物线的 顶点 .

学生先尝试自己动手画图,然后再交流,从中得出结论与大家分享.

设计意图:可点名展示,也可分组展示,培 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 养学生分析问题的能力;同时增强学生团结协作的精神。老师在此环节准确引导,及时点拨和追问,总结出解决问题的方法和规律。

.知识梳理

以”本节课我们学到了什么?”启发学生谈谈本节课的收获.

1. y=ax2 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> (a0)的图象时,可以直接先画出图象在y轴右边的部分,然后利用对称性,画出图象在y轴左边的部分.在画右边部分时,只要“列表、描点、连线”三个步骤就可以了.

2. 二次函数y=ax2(a0)图象的开口向下,对称轴是y轴, 对称轴与图象的交点是原点( <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 00);图象在对称轴左边的部分,函数值随自变量取值的增大而增大,简称为左升;

图象在对称轴右边的部分 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> ,函数值随自变量取值的增大而减小,简称为右降 ;当x=0时,函数值最大,最大值为0

.当堂检测

1.画出二次函数y=6x2的图象,并填空:

1)图象的对称轴是 ,对称轴与图象的交点是

2)图象的开口向

3)图象在对称轴左边的部分,函数值随自变量取值的增大而

图象在对称轴右边的部分,函数值随自变量取值的增大而

2.在同一坐标系中画出二次函数y=3x2y= <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> x2的图象,并比较它们的共同点与不同点.

.教学反思

本节课通过探讨 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 用描点法画出二次 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 函数 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> y=ax2(a0)的图象,结合图象得出二次函数y=ax2(a0)的性质.在教学过程中不断向学生渗透数学思想方法,让学生在活动中感数学思想方法之美、体会数学思想方法之重要,部分学生还能自觉得运用这些数学思想方法去分析、思考问题.