【332190】【推荐】27.2.3 相似三角形的应用举例-同步练习(1)B
27.2.3 相似三角形的应用举例
要求:运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题、盲区问题)等的一些实际问题
1、如图,身高为
米的某学生想测量学校旗杆的高度,当他站在
处时,他头顶端的影
子正好与旗杆顶端的影子重合,并测得AC=2米,BC=8米,则旗杆的高度是( )
A.
米 B.7米
C.8米
D.9米
2.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长
为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分
落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,
若此时落在地面上的影长为4.4米,则树高为( )
A.11.5米 B.11.75米 C.11.8米 D.12.25米
3.如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O)20米的点A处,沿
OA所在的直线行走14米到点B时,人影的长度( )
A.增大1.5米 B. 减小1.5米 C. 增大3.5米 D. 减小3.5米
4. 如图,王华同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶
部刚好接触路灯AC的底部,当他向前再步行12 m到达Q点时,发现身前他影子的顶部
刚好接触到路灯BD的底部,已知王华同学的身高是1.6m,两个路灯的高度都是9.6m。
(1)求两个路灯之间的距离;
(2)当王华同学走到路灯BD处时,他在路灯AC下的影子长是多少?
5、如图,已知零件的外径a为25cm ,要求它的厚度x,需先求出内孔的直径AB,现用一个交叉卡钳(两条尺长AC和BD相等)去量,若OA:OC=OB:OD=3,且量得CD=7cm,求厚度x。
6
、小明想利用树影测量树高,他在某一时刻测得长为1m的竹竿影长0.9m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,如图,他先测得留在墙上的影高1.2m,又测得地面部分的影长2.7m,他求得的树高是多少?
- 1【354787】初一期末试卷一
- 2【354786】初一期末试卷五
- 3【354785】初一期末试卷四
- 4【354784】初一期末试卷三
- 5【354783】初一期末试卷二
- 6【350123】第6章 知识点梳理
- 7【350122】第5章 知识点梳理
- 8【350121】第4章 知识点梳理
- 9【350120】第3章 知识点梳理
- 10【350119】第2章 知识点梳理
- 11【350118】第1章 知识点梳理
- 12【350117】6.2 方差
- 13【350116】6.1.3 众数
- 14【350115】6.1.2 中位数
- 15【350114】6.1.1 第2课时 加权平均数
- 16【350112】5.3 图形变换的简单应用
- 17【350113】6.1.1 第1课时 平均数
- 18【350111】5.2 旋转
- 19【350110】5.1.2 轴对称变换
- 20【350109】5.1.1 轴对称图形
- 【350108】4.6 两条平行线间的距离
- 【350107】4.5 第2课时 垂线段与点到直线的距离
- 【350106】4.5 第1课时 垂线
- 【350105】4.4 第2课时 平行线的判定方法2,3
- 【350104】4.4 第1课时 平行线的判定方法1
- 【350103】4.3 平行线的性质
- 【350102】4.2 平移
- 【350101】4.1.2 相交直线所成的角
- 【350100】4.1.1 相交与平行
- 【350099】3.3 第2课时 利用完全平方公式进行因式分解
- 【350098】3.3 第1课时 利用平方差公式进行因式分解
- 【350097】3.2 第2课时 提多项式公因式
- 【350096】3.2 第1课时 提单项式公因式
- 【350095】3.1 多项式的因式分解
- 【350094】2.2.3 运用乘法公式进行计算
- 【350093】2.2.2 第2课时 运用完全平方公式进行计算
- 【350092】2.2.2 第1课时 完全平方公式
- 【350091】2.2.1 平方差公式
- 【350090】2.1.4 第2课时 多项式与多项式相乘
- 【350089】2.1.4 第1课时 单项式与多项式相乘