【324394】2024春七年级数学下册 第1章平行线(压轴30题专练)(含解析)(新版)浙教版
第1章平行线(压轴30题专练)
一.选择题(共9小题)
1.(奉化区校级期末)如图,已知直线AB,CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB,CD,AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③180°﹣α﹣β,④360°﹣α﹣β,∠AEC的度数可能是( )
A.①②③ B.①②④ C.①③④ D.①②③④
【考点】平行线的性质.版权所有
【分析】根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.
【解答】解:(1)如图1,由AB∥CD,可得∠AOC=∠DCE1=β,
∵∠AOC=∠BAE1+∠AE1C,
∴∠AE1C=β﹣α.
(2)如图2,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,
∴∠AE2C=α+β.
当AE2平分∠BAC,CE2平分∠ACD时,
∠BAE2+∠DCE2=
(∠BAC+∠ACD)=
180°=90°,
即α+β=90°,
又∵∠AE2C=∠BAE2+∠DCE2,
∴∠AE2C=180°﹣(α+β)=180°﹣α﹣β;
(3)如图3,由AB∥CD,可得∠BOE3=∠DCE3=β,
∵∠BAE3=∠BOE3+∠AE3C,
∴∠AE3C=α﹣β.
(4)如图4,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,
∴∠AE4C=360°﹣α﹣β.
(5)(6)当点E在CD的下方时,同理可得,∠AEC=α﹣β或β﹣α.
综上所述,∠AEC的度数可能为β﹣α,α+β,α﹣β,180°﹣α﹣β,360°﹣α﹣β.
故选:D.
2.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是( )
A.15° B.25° C.35° D.45°
【考点】平行线的性质.版权所有
【分析】先根据两直线平行,内错角相等求出∠3,再根据直角三角形的性质用∠2=60°﹣∠3代入数据进行计算即可得解.
【解答】解:∵直尺的两边互相平行,∠1=25°,
∴∠3=∠1=25°,
∴∠2=60°﹣∠3=60°﹣25°=35°.
故选:C.
3.如图,直线AB、CD相交于点E,DF∥AB.若∠D=70°,则∠CEB等于( )
A.70° B.80° C.90° D.110°
【考点】平行线的性质.版权所有
【分析】由DF∥AB,根据两直线平行,内错角相等,即可求得∠BED的度数,又由邻补角的定义,即可求得答案.
【解答】解:∵DF∥AB,
∴∠BED=∠D=70°,
∵∠BED+∠BEC=180°,
∴∠CEB=180°﹣70°=110°.
故选:D.
4.如图,AB∥CD,EF⊥AB于E,EF交CD于F,已知∠1=60°,则∠2=( )
A.20° B.60° C.30° D.45°
【考点】垂线;平行线的性质.版权所有
【分析】利用平行线的性质和垂线的定义计算.
【解答】解:∵AB∥CD,
∴∠3=∠1=60°(两直线平行,同位角相等),
∵EF⊥AB于E,
∴∠2=90°﹣60°=30°,
故选:C.
5.(固安县期末)小明、小亮、小刚、小颖一起研究一道数学题.如图,已知EF⊥AB,CD⊥AB,
小明说:“如果还知道∠CDG=∠BFE,则能得到∠AGD=∠ACB.”
小亮说:“把小明的已知和结论倒过来,即由∠AGD=∠ACB,可得到∠CDG=∠BFE.”
小刚说:“∠AGD一定大于∠BFE.”
小颖说:“如果连接GF,则GF一定平行于AB.”
他们四人中,有( )个人的说法是正确的.
A.1 B.2 C.3 D.4
【考点】平行线的判定与性质.版权所有
【分析】由EF⊥AB,CD⊥AB,知CD∥EF,然后根据平行线的性质与判定即可得出答案;
【解答】解:已知EF⊥AB,CD⊥AB,∴CD∥EF,
(1)若∠CDG=∠BFE,
∵∠BCD=∠BFE,
∴∠BCD=∠CDG,
∴DG∥BC,
∴∠AGD=∠ACB.
(2)若∠AGD=∠ACB,
∴DG∥BC,
∴∠BCD=∠CDG,∠BCD=∠BFE,
∴∠CDG=∠BFE.
(3)由题意知,EF∥DC,
∴∠BFE=∠DCB<∠ACB,
如下图,
①当DG∥BC时,则∠AGD=∠ACB>∠BFE,
即∠AGD一定大于∠BFE;
②当GD(GD′、GD″)与BC不平行时,
如图,设DG∥BC,
当点G′在点G的上方时,
∵∠AG′D>AGD,
由①知,∠AG′D一定大于∠BFE;
当点G″在点G的下方时,
见上图,则∠AG″D不一定大于∠BFE,
综上,∠AGD不一定大于∠BFE;
(4)如果连接GF,则GF不一定平行于AB;
综上知:正确的说法有两个.
故选:B.
6.如图,一块砖的外侧面积为x,那么图中残留部分墙面的面积为( )
A.4x B.12x C.8x D.16x
【考点】生活中的平移现象.版权所有
【分析】本题主要考查对图形的观察能力和平移方法的运用,图形的平移只改变图形的位置,而不改变图形的形状和大小.
【解答】解:观察图形,利用平移的方法可将空白的部分移到一起,可发现它是由4个外侧面积为x的砖构成;整个墙面由16个外侧面积为x的砖构成,故残留部分墙面的面积为16x﹣4x=12x.
故选:B.
7.如图,Rt△ABC沿直角边BC所在的直线向右平移得到△DEF,下列结论中错误的是( )
A.△ABC≌△DEF B.∠DEF=90° C.AC=DF D.EC=CF
【考点】平移的性质.版权所有
【分析】由平移的性质,结合图形,对选项进行一一分析,选择正确答案.
【解答】解:A、Rt△ABC向右平移得到△DEF,则△ABC≌△DEF成立,故正确;
B、△DEF为直角三角形,则∠DEF=90°成立,故正确;
C、△ABC≌△DEF,则AC=DF成立,故正确;
D、EC=CF不能成立,故错误.
故选:D.
8.如图,把边长为2的正方形的局部进行图①~图④的变换,拼成图⑤,则图⑤的面积是( )
A.18 B.16 C.12 D.8
【考点】平移的性质.版权所有
【分析】根据平移的基本性质,平移不改变图形的形状和大小,即图形平移后面积不变,则⑤面积可求.
【解答】解:一个正方形面积为4,而把一个正方形从①﹣④变换,面积并没有改变,所以图⑤由4个图④构成,故图⑤面积为4×4=16.
故选:B.
9.(奉化区校级期末)如图,AD∥BC,∠D=∠ABC,点E是边DC上一点,连接AE交BC的延长线于点H.点F是边AB上一点.使得∠FBE=∠FEB,作∠FEH的角平分线EG交BH于点G,若∠DEH=100°,则∠BEG的度数为( )
A.30° B.40° C.50° D.60°
【考点】平行线的性质.版权所有
【分析】AD∥BC,∠D=∠ABC,则AB∥CD,则∠AEF=180°﹣∠AED﹣∠BEG=180°﹣2β,在△AEF中,100°+2α+180°﹣2β=180°,故β﹣α=40°,即可求解.
【解答】解:设FBE=∠FEB=α,则∠AFE=2α,
∠FEH的角平分线为EG,设∠GEH=∠GEF=β,
∵AD∥BC,∴∠ABC+∠BAD=180°,
而∠D=∠ABC,∴∠D+∠BAD=180°,∴AB∥CD,
∠DEH=100°,则∠CEH=∠FAE=80°,
∠AEF=180°﹣∠FEG﹣∠HEG=180°﹣2β,
在△AEF中,80°+2α+180﹣2β=180°
故β﹣α=40°,
而∠BEG=∠FEG﹣∠FEB=β﹣α=40°,
故选:B.
二.填空题(共7小题)
10.(奉化区校级期末)如图,AB∥CD,CF平分∠DCG,GE平分∠CGB交FC的延长线于点E,若∠E=34°,则∠B的度数为 68° .
【考点】平行线的性质.版权所有
【分析】如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.
【解答】解:如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.
则有
,
①﹣②×2可得:∠GMC=2∠E,
∵∠E=34°,
∴∠GMC=68°,
∵AB∥CD,
∴∠GMC=∠B=68°,
故答案为68°.
11.(2019秋•嘉兴期末)如图,已知长方形纸片ABCD,O是BC边上一点,P为CD中点,沿AO折叠使得顶点B落在CD边上的点P处,则∠OAB的度数是 30° .
【考点】平行线的性质.版权所有
【分析】根据折叠,得出相等的线段和相等的角,根据中点得出DP=
AP,进而得出∠DAP=30°,再根据折叠对称,得出答案.
【解答】解:由折叠得,∠BAO=∠OAP,AB=AP,
∵长方形纸片ABCD,
∴AB=CD,∠D=∠DAB=∠B=90°,
∵P为CD中点,
∴PC=PD=
CD=
AP,
在Rt△ADP中,∠DAP=30°,
∴∠OAB=∠OAP=
(90°﹣30°)=30°,
故答案为:30°.
12.如图,某宾馆在重新装修后,准备在大厅的楼梯上铺上某种红色地毯,已知这种地毯每平方米售价30元,主楼梯道宽2米,其侧面如图所示,则购买地毯至少需要 504 元.
【考点】生活中的平移现象.版权所有
【分析】根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求.
【解答】解:如图,利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为5.8米,2.6米,
∴地毯的长度为2.6+5.8=8.4米,地毯的面积为8.4×2=16.8平方米,
∴买地毯至少需要16.8×30=504元.
13.(奉化区校级期末)如图,AB∥CD,∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∠E﹣∠F=33°,则∠E= 82° .
【考点】平行线的性质.版权所有
【分析】过F作FH∥AB,依据平行线的性质,可设∠ABF=∠EBF=α=∠BFH,∠DCG=∠ECG=β=∠CFH,根据四边形内角和以及∠E﹣∠F=33°,即可得到∠E的度数.
【解答】解:如图,过F作FH∥AB,
∵AB∥CD,
∴FH∥AB∥CD,
∵∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,
∴可设∠ABF=∠EBF=α=∠BFH,∠DCG=∠ECG=β=∠CFH,
∴∠ECF=180°﹣β,∠BFC=∠BFH﹣∠CFH=α﹣β,
∴四边形BFCE中,∠E+∠BFC=360°﹣α﹣(180°﹣β)=180°﹣(α﹣β)=180°﹣∠BFC,
即∠E+2∠BFC=180°,①
又∵∠E﹣∠BFC=33°,
∴∠BFC=∠E﹣33°,②
∴由①②可得,∠E+2(∠E﹣33°)=180°,
解得∠E=82°,
故答案为:82°.
14.(奉化区校级期末)如图,已知直线l1∥l2,且l3和l1、l2分别交于A、B两点,点P在AB上.
(1)∠1、∠2、∠3之间的关系为 ∠3=∠1+∠2 ;
(2)如果点P在A、B两点之间运动时,∠1、∠2、∠3之间的关系为 ∠3=∠1+∠2 ;
(3)如果点P(点P和A、B不重合)在A、B两点外侧运动时,∠1、∠2、∠3之间关系为 ∠1﹣∠2=∠3或∠2﹣∠1=∠3 .
【考点】平行线的性质.版权所有
【分析】(1)作PE∥AC,如图1,由于l1∥l2,则PE∥BD,根据平行线的性质得∠1=∠EPC,∠2=∠EPD,所以∠1+∠2=∠3;
(2)由(1)中的证明过程,可知∠1、∠2、∠3之间的关系不发生变化;
(3)根据题意,画出图形,利用平行线的性质可推出∠1、∠2、∠3之间的关系.
【解答】证明:(1)如图1,过点P作PQ∥l1,
∵PQ∥l1,
∴∠1=∠4(两直线平行,内错角相等),
∵PQ∥l1,l1∥l2(已知),
∴PQ∥l2(平行于同一条直线的两直线平行),
∴∠5=∠2(两直线平行,内错角相等),
∵∠3=∠4+∠5,
∴∠3=∠1+∠2(等量代换);
故答案为:∠3=∠1+∠2;
(2)∠1、∠2、∠3之间的关系不发生变化;
故答案为:∠3=∠1+∠2;
(3)∠1﹣∠2=∠3或∠2﹣∠1=∠3.
故答案为:∠1﹣∠2=∠3或∠2﹣∠1=∠3.
15.(奉化区校级期末)如图,PQ∥MN,A,B分别为直线MN、PQ上两点,且∠BAN=45°,若射线AM绕点A顺时针旋转至AN后立即回转,射线BQ绕点B逆时针旋转至BP后立即回转,两射线分别绕点A、点B不停地旋转,若射线AM转动的速度是a°/秒,射线BQ转动的速度是b°/秒,且a、b满足|a﹣5|+(b﹣1)2=0.若射线AM绕点A顺时针先转动18秒,射线BQ才开始绕点B逆时针旋转,在射线BQ到达BA之前,问射线AM再转动 15或22.5 秒时,射线AM与射线BQ互相平行.
【考点】非负数的性质:绝对值;非负数的性质:偶次方;平行线的判定与性质.版权所有
【分析】分两种情况讨论,依据∠ABQ'=∠BAM″时,BQ'∥AM″,列出方程即可得到射线AM、射线BQ互相平行时的时间.
【解答】解:设射线AM再转动t秒时,射线AM、射线BQ互相平行.
如图,射线AM绕点A顺时针先转动18秒后,AM转动至AM'的位置,∠MAM'=18×5=90°,
分两种情况:
①当9<t<18时,∠QBQ'=t°,∠M'AM″=5t°,
∵∠BAN=45°=∠ABQ,
∴∠ABQ'=45°﹣t°,∠BAM″=∠M'AM″﹣∠M'AB=5t﹣45°,
当∠ABQ'=∠BAM″时,BQ'∥AM″,
此时,45°﹣t°=5t﹣45°,
解得t=15;
②当18<t<27时,∠QBQ'=t°,∠NAM″=5t°﹣90°,∠BAM″=45°﹣(5t°﹣90°)=135°﹣5t°,
∵∠BAN=45°=∠ABQ,
∴∠ABQ'=45°﹣t°,∠BAM″=45°﹣(5t°﹣90°)=135°﹣5t°,
当∠ABQ'=∠BAM″时,BQ'∥AM″,
此时,45°﹣t°=135°﹣5t,
解得t=22.5;
综上所述,射线AM再转动15秒或22.5秒时,射线AM、射线BQ互相平行.
故答案为15或22.5.
16.(乐清市期末)将一副三角板如图1所示摆放,直线GH∥MN,现将三角板ABC绕点A以每秒1°的速度顺时针旋转,同时三角板DEF绕点D以每秒2°的速度顺时针旋转,设时间为t秒,如图2,∠BAH=t°,∠FDM=2t°,且0≤t≤150,若边BC与三角板的一条直角边(边DE,DF)平行时,则所有满足条件的t的值为 30或120 .
【考点】一元一次方程的应用;平行线的性质.版权所有
【分析】根据题意得∠HAC=∠BAH+∠BAC=t°+30°,∠FDM=2t°,(1)如图1,当DE∥BC时,延长AC交MN于点P,分两种情况讨论:①DE在MN上方时,②DE在MN下方时,∠FDP=2t°﹣180°,列式求解即可;(2)当BC∥DF时,延长AC交MN于点I,①DF在MN上方时,∠FDN=180°﹣2t°,②DF在MN下方时,∠FDN=180°﹣2t°,列式求解即可.
【解答】解:由题意得,∠HAC=∠BAH+∠BAC=t°+30°,∠FDM=2t°,
(1)如图1,当DE∥BC时,延长AC交MN于点P,
①DE在MN上方时,
∵DE∥BC,DE⊥DF,AC⊥BC,
∴AP∥DF,
∴∠FDM=∠MPA,
∵MN∥GH,
∴∠MPA=∠HAC,
∴∠FDM=∠HAC,即2t°=t°+30°,
∴t=30,
②DE在MN下方时,∠FDP=2t°﹣180°,
∵DE∥BC,DE⊥DF,AC⊥BC,
∴AP∥DF,
∴∠FDP=∠MPA,
∵MN∥GH,
∴∠MPA=∠HAC,
∴∠FDP=∠HAC,即2t°﹣180°=t°+30°,
∴t=210(不符合题意,舍去),
(2)当BC∥DF时,延长AC交MN于点I,
①DF在MN上方时,∠FDN=180°﹣2t°,
∵DF∥BC,AC⊥BC,
∴AI∥DF,
∴∠FDN+∠MIA=90°,
∵MN∥GH,
∴∠MIA=∠HAC,
∴∠FDN+∠HAC=90°,即180°﹣2t°+t°+30°=90°,
∴t=120,
②DF在MN下方时,∠FDN=180°﹣2t°,
∵DF∥BC,AC⊥BC,DE⊥DF,
∴AC∥DE,
∴∠AIM=∠MDE,
∵MN∥GH,
∴∠MIA=∠HAC,
∴∠EDM=∠HAC,即2t°﹣180°=t°+30°,
∴t=210(不符合题意,舍去),
综上所述:所有满足条件的t的值为30或120.
故答案为:30或120.
三.解答题(共14小题)
17.(奉化区校级期末)填写推理理由:
已知:如图,D,F,E分别是BC,AC,AB上的点,DF∥AB,DE∥AC,
试说明∠EDF=∠A.
解:∵DF∥AB (已知) ,
∴∠A+∠AFD=180° (两直线平行,同旁内角互补) .
∵DE∥AC (已知) ,
∴∠AFD+∠EDF=180°( 两直线平行,同旁内角互补 ).
∴∠A=∠EDF( 同角的补角相等 ).
【考点】平行线的性质.版权所有
【分析】根据平行线的性质和同角的补角相等即可得出结论.
【解答】解:∵DF∥AB(已知),
∴∠A+∠AFD=180°(两直线平行,同旁内角互补).
∵DE∥AC(已知),
∴∠AFD+∠EDF=180°(两直线平行,同旁内角互补).
∴∠A=∠EDF(同角的补角相等).
故答案为:已知;两直线平行,同旁内角互补;已知;两直线平行,同旁内角互补;同角的补角相等.
18.(慈溪市期末)如图,直线CD∥EF,点A,B分别在直线CD,EF上(自左至右分别为C,A,D和E,B,F),∠ABF=60°.射线AM自射线AB的位置开始,绕点A以每秒1°的速度沿逆时针方向旋转,同时,射线BN自射线BE开始以每秒5°的速度绕点B沿顺时针方向旋转,当射线BN旋转到BF的位置时,两者停止运动.设旋转时间为x秒.
(1)如图1,直接写出下列答案:
①∠BAD的度数;
②射线BN过点A时的x的值.
(2)如图2,求当AM∥BN时的x的值.
(3)若两条射线AM和BN所在的直线交于点P.
①如图3,若P在CD与EF之间,且∠APB=126°,求x的值.
②若x<24,求∠APB的度数(直接写出用含x的代数式表示的结果).
【考点】相交线;平行线的性质.版权所有
【分析】(1)①由CD∥EF,∠ABF=60°,可得:∠ABF+∠BAD=180°,故∠BAD=180°﹣∠ABF=180°﹣60°=120°.
②当射线BN旋转到BA所在直线时,则射线BN过点A.那么,射线BN旋转的角度为120,故(5x)°=120°.从而推断出x=24.
(2)当AM∥BN时,∠NBA=∠MAB,故∠EBA﹣∠EBN=∠MAB.那么,x=20.
(3)①由题意可得:∠EBP=(5x)°,∠BAP=(1x)°=x°,∠APB=126°,故∠ABP=∠EBP﹣∠EBA=(5x)°﹣120°.由∠ABP+∠BAP+∠APB=180°,故x=29.
②如图,由x<24,射线BN始终在∠EBA内部.此时,P在EF的下方.由题意可得:∠EBN=(5x)°,∠BAP=(1x)°=x°,故∠CBA=∠EBA﹣∠EBN=120°﹣(5x)°.又由∠CBA=∠BAP+∠BPA,故∠BPA=∠CBA﹣∠BAP=120°﹣(5x)°﹣x°=120°﹣(6x)°(0<x<24).
【解答】解:(1)①∵CD∥EF,∠ABF=60°,
∴∠ABF+∠BAD=180°.
∴∠BAD=180°﹣∠ABF=180°﹣60°=120°.
②∵当射线BN旋转到BF的位置时,两者停止运动,
∴当x=180°÷5°=36时,两者停止运动.
此时,射线AM在∠BAD的内部.
由题意知:0≤x≤36.
∵∠ABE+∠ABF=180°,
∴∠ABE=180°﹣∠ABF=180°﹣60°=120°.
当射线BN旋转到BA所在直线时,则射线BN过点A.
∴射线BN旋转的角度为120.
∴(5x)°=120°.
∴x=24(符合题意).
(2)当AM∥BN时,∠NBA=∠MAB.
∴∠EBA﹣∠EBN=∠MAB.
∴120°﹣5°•x=1°•x.
∴x=20(符合题意).
(3)①若P在CD与EF之间,则x>24.
由题意可得:∠EBP=(5x)°,∠BAP=(1x)°=x°,∠APB=126°.
∴∠ABP=∠EBP﹣∠EBA=(5x)°﹣120°.
又∵∠ABP+∠BAP+∠APB=180°,
∴(5x)°﹣120°+x°+126°=180°.
∴x=29(符合题意).
②如图4,
∵x<24,
∴射线BN始终在∠EBA内部.
此时,P在EF的下方.
当x=0时,P不存在.
由题意可得:∠EBN=(5x)°,∠BAP=(1x)°=x°.
∴∠CBA=∠EBA﹣∠EBN=120°﹣(5x)°.
∵∠CBA=∠BAP+∠BPA,
∴∠BPA=∠CBA﹣∠BAP=120°﹣(5x)°﹣x°=120°﹣(6x)°(0<x<24).
19.(奉化区校级期末)如图,已知直线AB∥射线CD,∠CEB=100°.P是射线EB上一动点,过点P作PQ∥EC交射线CD于点Q,连接CP.作∠PCF=∠PCQ,交直线AB于点F,CG平分∠ECF.
(1)若点P,F,G都在点E的右侧.
①求∠PCG的度数;
②若∠EGC﹣∠ECG=40°,求∠CPQ的度数.
(2)在点P的运动过程中,是否存在这样的情形,使
?若存在,求出∠CPQ的度数;若不存在,请说明理由.
【考点】平行线的性质.版权所有
【分析】(1)①依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;
②依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=20°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=60°;
(2)设∠EGC=3x,∠EFC=2x,则∠GCF=3x﹣2x=x,分两种情况讨论:①当点G、F在点E的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.
【解答】解:(1)①∵∠CEB=100°,AB∥CD,
∴∠ECQ=80°,
∵∠PCF=∠PCQ,CG平分∠ECF,
∴
=
∠ECQ=40°;
②∵AB∥CD
∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,
∴∠EGC+∠ECG=80°
又∵∠EGC﹣∠ECG=40°,
∴∠EGC=60°,∠ECG=20°
∴∠ECG=∠GCF=20°,∠PCF=∠PCQ=
(80°﹣40°)=20°,
∵PQ∥CE,
∴∠CPQ=∠ECP=60°;
(2)设∠EGC=3x,∠EFC=2x,则∠GCF=3x﹣2x=x,
①当点G、F在点E的右侧时,
则∠ECG=∠PCF=∠PCD=x,
∵∠ECD=80°,
∴4x=80°,
解得x=20°,
∴∠CPQ=3x=60°;
②当点G、F在点E的左侧时,
则∠ECG=∠GCF=x,
∵∠CGF=180°﹣3x,∠GCQ=80°+x,
∴180°﹣3x=80°+x,
解得x=25°,
∴∠FCQ=∠ECF+∠ECQ=50°+80°=130°,
∴
,
∴∠CPQ=∠ECP=65°﹣50°=15°.
20.(招远市期末)问题情境
在综合与实践课上,老师让同学们以“两条平行线AB,CD和一块含60°角的直角三角尺EFG(∠EFG=90°,∠EGF=60°)”为主题开展数学活动.
操作发现
(1)如图(1),小明把三角尺的60°角的顶点G放在CD上,若∠2=2∠1,求∠1的度数;
(2)如图(2),小颖把三角尺的两个锐角的顶点E、G分别放在AB和CD上,请你探索并说明∠AEF与∠FGC之间的数量关系;
结论应用
(3)如图(3),小亮把三角尺的直角顶点F放在CD上,30°角的顶点E落在AB上.若∠AEG=α,则∠CFG等于 60°﹣α (用含α的式子表示).
【考点】平行线的性质.版权所有
【分析】(1)依据AB∥CD,可得∠1=∠EGD,再根据∠2=2∠1,∠FGE=60°,即可得出∠EGD=
(180°﹣60°)=40°,进而得到∠1=40°;
(2)根据AB∥CD,可得∠AEG+∠CGE=180°,再根据∠FEG+∠EGF=90°,即可得到∠AEF+∠FGC=90°;
(3)依据AB∥CD,可得∠AEF+∠CFE=180°,再根据∠GFE=90°,∠GEF=30°,∠AEG=α,即可得到∠GFC=180°﹣90°﹣30°﹣α=60°﹣α.
【解答】解:(1)如图1,∵AB∥CD,
∴∠1=∠EGD,
又∵∠2=2∠1,
∴∠2=2∠EGD,
又∵∠FGE=60°,
∴∠EGD=
(180°﹣60°)=40°,
∴∠1=40°;
(2)如图2,∵AB∥CD,
∴∠AEG+∠CGE=180°,
即∠AEF+∠FEG+∠EGF+∠FGC=180°,
又∵∠FEG+∠EGF=90°,
∴∠AEF+∠FGC=90°;
(3)如图3,∵AB∥CD,
∴∠AEF+∠CFE=180°,
即∠AEG+∠FEG+∠EFG+∠GFC=180°,
又∵∠GFE=90°,∠GEF=30°,∠AEG=α,
∴∠GFC=180°﹣90°﹣30°﹣α=60°﹣α.
故答案为:60°﹣α.
21.(九龙坡区校级月考)如图,已知AB∥CD,点P在直线BD上(点P与点B、D不重合),分别记∠BAP,∠DCP,∠APC为∠1,∠2,∠3.
(1)当点P在B、D两点间移动时,写出∠1,∠2,∠3之间的等量关系,并说明理由;
(2)当点P在射线BE上移动时,(1)中的等量关系还存在吗?若存在,请说明理由;若不存在,请写出一个你认为正确的等量关系,并说明理由.
【考点】平行线的性质.版权所有
【分析】(1)过P作PQ∥AB,根据两直线平行,内错角相等,即可得到∠3=∠1+∠2;
(2)根据平行线的性质以及三角形外角性质,即可得出∠2=∠1+∠3.
【解答】解:(1)等量关系:∠3=∠1+∠2,
如图,过P作PQ∥AB,
∵AB∥CD,∴PQ∥CD,
∴∠APQ=∠1,∠CPQ=∠2,
∴∠3=∠APQ+∠CPQ=∠1+∠2;
(2)答:(1)中等量关系不存在了.存在:∠2=∠1+∠3.
如图所示,∵AB∥CD,
∴∠2=∠PEB,
∵∠3+∠1=∠PEB,
∴∠2=∠1+∠3.
22.(颍州区期末)如图,点D、F在线段AB上,点E、G分别在线段BC和AC上,CD∥EF,∠1=∠2.
(1)判断DG与BC的位置关系,并说明理由;
(2)若DG是∠ADC的平分线,∠3=85°,且∠DCE:∠DCG=9:10,试说明AB与CD有怎样的位置关系?
【考点】平行线的判定与性质.版权所有
【分析】(1)先根据CD∥EF得出∠2=∠BCD,再由∠1=∠2得出∠1=∠BCD,进而可得出结论;
(2)根据DG∥BC,∠3=85°得出∠BCG的度数,再由∠DCE:∠DCG=9:10得出∠DCE的度数,由DG是∠ADC的平分线可得出∠ADC的度数,由此得出结论.
【解答】解:(1)DG∥BC.
理由:∵CD∥EF,
∴∠2=∠BCD.
∵∠1=∠2,
∴∠1=∠BCD,
∴DG∥BC;
(2)CD⊥AB.
理由:∵由(1)知DG∥BC,∠3=85°,
∴∠BCG=180°﹣85°=95°.
∵∠DCE:∠DCG=9:10,
∴∠DCE=95°×
=45°.
∵DG是∠ADC的平分线,
∴∠ADC=2∠CDG=90°,
∴CD⊥AB.
23.(饶平县校级期中)如图,已知DC∥FP,∠1=∠2,∠FED=28°,∠AGF=80°,FH平分∠EFG.
(1)说明:DC∥AB;
(2)求∠PFH的度数.
【考点】平行线的判定与性质.版权所有
【分析】(1)由DC∥FP知∠3=∠2=∠1,可得DC∥AB;
(2)由(1)利用平行线的判定得到AB∥PF∥CD,根据平行线的性质得到∠AGF=∠GFP,∠DEF=∠EFP,然后利用已知条件即可求出∠PFH的度数.
【解答】解:(1)∵DC∥FP,
∴∠3=∠2,
又∵∠1=∠2,
∴∠3=∠1,
∴DC∥AB;
(2)∵DC∥FP,DC∥AB,∠DEF=28°,
∴∠DEF=∠EFP=28°,AB∥FP,
又∵∠AGF=80°,
∴∠AGF=∠GFP=80°,
∴∠GFE=∠GFP+∠EFP=80°+28°=108°,
又∵FH平分∠EFG,
∴∠GFH=
∠GFE=54°,
∴∠PFH=∠GFP﹣∠GFH=80°﹣54°=26°.
24.(民权县期末)如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.
【考点】平行线的判定与性质.版权所有
【分析】首先利用平行线的性质以及角平分线的性质得到满足关于AD∥BC的条件,内错角∠2和∠E相等,得出结论.
【解答】证明:∵AE平分∠BAD,
∴∠1=∠2,
∵AB∥CD,∠CFE=∠E,
∴∠1=∠CFE=∠E,
∴∠2=∠E,
∴AD∥BC.
25.(饶平县校级期末)已知直线AB∥CD.
(1)如图1,直接写出∠BME、∠E、∠END的数量关系为 ∠E=∠END﹣∠BME ;
(2)如图2,∠BME与∠CNE的角平分线所在的直线相交于点P,试探究∠P与∠E之间的数量关系,并证明你的结论;
(3)如图3,∠ABM=
∠MBE,∠CDN=
∠NDE,直线MB、ND交于点F,则
=
.
【考点】平行线的性质.版权所有
【分析】(1)由AB∥CD,即可得到∠END=∠EFB,再根据∠EFB是△MEF的外角,即可得出∠E=∠EFB﹣∠BME=∠END﹣∠BME;
(2)由平行线的性质以及三角形外角性质,即可得到∠NPM=∠NGB+∠PMA=∠CNP+∠PMA,再根据三角形内角和定理,即可得到∠E+2∠PMA+2∠CNP=180°,即∠E+2(∠PMA+∠CNP)=180°,即可得到∠E+2∠NPM=180°;
(3)延长AB交DE于G,延长CD交BF于H,由平行线的性质以及三角形外角性质,即可得到∠E=∠ABE﹣∠AGE=∠ABE﹣∠CDE;依据∠CHB是△DFH的外角,即可得到∠F=∠CHB﹣∠FDH=
∠ABE﹣
∠CDE=
(∠ABE﹣∠CDE),进而得出∠F=
∠E.
【解答】解:(1)如图1,∵AB∥CD,
∴∠END=∠EFB,
∵∠EFB是△MEF的外角,
∴∠E=∠EFB﹣∠BME=∠END﹣∠BME,
故答案为:∠E=∠END﹣∠BME;
(2)如图2,∵AB∥CD,
∴∠CNP=∠NGB,
∵∠NPM是△GPM的外角,
∴∠NPM=∠NGB+∠PMA=∠CNP+∠PMA,
∵MQ平分∠BME,PN平分∠CNE,
∴∠CNE=2∠CNP,∠FME=2∠BMQ=2∠PMA,
∵AB∥CD,
∴∠MFE=∠CNE=2∠CNP,
∵△EFM中,∠E+∠FME+∠MFE=180°,
∴∠E+2∠PMA+2∠CNP=180°,
即∠E+2(∠PMA+∠CNP)=180°,
∴∠E+2∠NPM=180°;
(3)如图3,延长AB交DE于G,延长CD交BF于H,
∵AB∥CD,
∴∠CDG=∠AGE,
∵∠ABE是△BEG的外角,
∴∠E=∠ABE﹣∠AGE=∠ABE﹣∠CDE,①
∵∠ABM=
∠MBE,∠CDN=
∠NDE,
∴∠ABM=
∠ABE=∠CHB,∠CDN=
∠CDE=∠FDH,
∵∠CHB是△DFH的外角,
∴∠F=∠CHB﹣∠FDH=
∠ABE﹣
∠CDE=
(∠ABE﹣∠CDE),②
由①代入②,可得∠F=
∠E,
即
.
故答案为:
.
26.(太和县期末)已知:△ABC和同一平面内的点D.
(1)如图1,点D在BC边上,过D作DE∥BA交AC于E,DF∥CA交AB于F.
①依题意,在图1中补全图形;
②判断∠EDF与∠A的数量关系,并直接写出结论(不需证明).
(2)如图2,点D在BC的延长线上,DF∥CA,∠EDF=∠A.判断DE与BA的位置关系,并证明.
(3)如图3,点D是△ABC外部的一个动点,过D作DE∥BA交直线AC于E,DF∥CA交直线AB于F,直接写出∠EDF与∠A的数量关系(不需证明).
【考点】平行线的判定与性质.版权所有
【分析】(1)根据过D作DE∥BA交AC于E,DF∥CA交AB于F,进行作图;根据平行线的性质,即可得到∠A=∠EDF;
(2)延长BA交DF于G.根据平行线的性质以及判定进行推导即可;
(3)分两种情况讨论,即可得到∠EDF与∠A的数量关系:∠EDF=∠A,∠EDF+∠A=180°.
【解答】解:(1)①补全图形如图1;
②∠EDF=∠A.
理由:∵DE∥BA,DF∥CA,
∴∠A=∠DEC,∠DEC=∠EDF,
∴∠A=∠EDF;
(2)DE∥BA.
证明:如图,延长BA交DF于G.
∵DF∥CA,
∴∠2=∠3.
又∵∠1=∠2,
∴∠1=∠3.
∴DE∥BA.
(3)∠EDF=∠A,∠EDF+∠A=180°.
理由:如左图,∵DE∥BA,DF∥CA,
∴∠D+∠E=180°,∠E+∠EAF=180°,
∴∠EDF=∠EAF=∠A;
如右图,∵DE∥BA,DF∥CA,
∴∠D+∠F=180°,∠F=∠CAB,
∴∠EDF+∠BAC=180°.
27.(奉化区校级期末)课题学习:平行线的“等角转化”功能.
阅读理解:
如图1,已知点A是BC外一点,连接AB,AC.求∠BAC+∠B+∠C的度数.
(1)阅读并补充下面推理过程.
解:过点A作ED∥BC,所以∠B= ∠EAB ,∠C= ∠DAC .
又因为∠EAB+∠BAC+∠DAC=180°.所以∠B+∠BAC+∠C=180°.
解题反思:
从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决.
方法运用:
(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.
提示:过点C作CF∥AB.
深化拓展:
(3)已知AB∥CD,点C在点D的右侧,∠ADC=70°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间.
如图3,点B在点A的左侧,若∠ABC=60°,则∠BED的度数为 65 °.
【考点】平行线的判定与性质.版权所有
【分析】(1)根据平行线的性质即可得到结论;
(2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;
(3)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数.
【解答】解:(1)过点A作ED∥BC,
∴∠B=∠EAB,∠C=∠DCA,
又∵∠EAB+∠BAC+∠DAC=180°,
∴∠B+∠BAC+∠C=180°.
(2)过点C作CF∥AB,
∵AB∥ED,
∴AB∥ED∥CF,
∴∠B=∠BCF,∠C=∠DCF,
∴∠B+∠BCD+∠D=∠BCF+∠BCD+∠DCF=360°.
(3)如图,过点E作EF∥AB,
∵AB∥CD,
∴AB∥CD∥EF,
∴∠ABE=∠BEF,∠CDE=∠DEF,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,
∴∠ABE=
∠ABC=30°,∠CDE=
∠ADC=35°,
∴∠BED=∠BEF+∠DEF=30°+35°=65°
故答案为:65;
28.(奉化区校级期末)[感知]如图①,AB∥CD,∠AEP=40°,∠PFD=130°,求∠EPF的度数.小明想到了以下方法:
解;(1)如图①,过点P作PM∥AB,
∴∠1=∠AEP=40°(两直线平行,内错角相等)
∵AB∥CD(已知),
∴PM∥CD(平行于同一条直线的两直线平行),
∴∠2+∠PFD=180°(两直线平行,同旁内角互补).
∵∠PFD=130°(已知),
∴∠2=180°﹣130°=50°(等式的性质),
∴∠1+∠2=40°+50°=90°(等式的性质).
即∠EPF=90°(等量代换).
[探究]如图②,AB∥CD,∠AEP=50°,∠PFC=120°,求∠EPF的度数.
[应用]如图③所示,在[探究]的条件下,∠PEA的平分线和∠PFC的平分线交于点G,则∠G的度数是 35 °.
【考点】平行公理及推论;平行线的判定与性质.版权所有
【分析】[探究]过点P作PM∥AB,根据AB∥CD,PM∥CD,进而根据平行线的性质即可求∠EPF的度数.
[应用]如图③所示,在[探究]的条件下,根据∠PEA的平分线和∠PFC的平分线交于点G,可得∠G的度数.
【解答】[探究]如图②,过点P作PM∥AB,
∴∠MPE=∠AEP=50°(两直线平行,内错角相等)
∵AB∥CD(已知),
∴PM∥CD(平行于同一条直线的两直线平行),
∴∠PFC=∠MPF=120°(两直线平行,内错角相等).
∴∠EPF=∠MPF﹣∠MPE=120°﹣50°=70°(等式的性质).
[应用]如图③所示,
∵EG是∠PEA的平分线,FG是∠PFC的平分线,
∴∠AEG=
AEP=25°,∠GFC=
PFC=60°,
过点G作GM∥AB,
∴∠MGE=∠AEG=25°(两直线平行,内错角相等)
∵AB∥CD(已知),
∴GM∥CD(平行于同一条直线的两直线平行),
∴∠GFC=∠MGF=60°(两直线平行,内错角相等).
∴∠G=∠MGF﹣∠MGE=60°﹣25°=35°.
故答案为:35.
29.(南岗区期末)已知:直线EF分别与直线AB,CD相交于点G,H,并且∠AGE+∠DHE=180°.
(1)如图1,求证:AB∥CD;
(2)如图2,点M在直线AB,CD之间,连接GM,HM,求证:∠M=∠AGM+∠CHM;
(3)如图3,在(2)的条件下,射线GH是∠BGM的平分线,在MH的延长线上取点N,连接GN,若∠N=∠AGM,∠M=∠N+
∠FGN,求∠MHG的度数.
【考点】平行线的判定与性质.版权所有
【分析】(1)根据已知条件和对顶角相等即可证明;
(2)如图2,过点M作MR∥AB,可得AB∥CD∥MR.进而可以证明;
(3)如图3,令∠AGM=2α,∠CHM=β,则∠N=2α,∠M=2α+β,过点H作HT∥GN,可得∠MHT=∠N=2α,∠GHT=∠FGN=2β,进而可得结论.
【解答】(1)证明:如图1,∵∠AGE+∠DHE=180°,∠AGE=∠BGF.
∴∠BGF+∠DHE=180°,
∴AB∥CD;
(2)证明:如图2,过点M作MR∥AB,
又∵AB∥CD,
∴AB∥CD∥MR.
∴∠GMR=∠AGM,∠HMR=∠CHM.
∴∠GMH=∠GMR+∠RMH=∠AGM+∠CHM.
(3)解:如图3,令∠AGM=2α,∠CHM=β,则∠N=2α,∠M=2α+β,
∵射线GH是∠BGM的平分线,
∴
,
∴∠AGH=∠AGM+∠FGM=2α+90°﹣α=90°+α,
∵
,
∴
,
∴∠FGN=2β,
过点H作HT∥GN,
则∠MHT=∠N=2α,∠GHT=∠FGN=2β,
∴∠GHM=∠MHT+∠GHT=2α+2β,
∠CHG=∠CHM+∠MHT+∠GHT=β+2α+2β=2α+3β,
∵AB∥CD,
∴∠AGH+∠CHG=180°,
∴90°+α+2α+3β=180°,
∴α+β=30°,
∴∠GHM=2(α+β)=60°.
30.(奉化区校级期末)(1)如图1,已知直线l1∥l2,且l3和l1,l2分别交于A,B两点,点P在线段AB上,则∠1,∠2,∠3之间的等量关系是 ∠3=∠1+∠2 ;如图2,点A在B处北偏东40°方向,在C处的北偏西45°方向,则∠BAC= 85 °.
(2)如图3,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°,试说明:AB∥CD;并探究∠2与∠3的数量关系.
【考点】方向角;平行线的判定与性质.版权所有
【分析】(1)在图1中,作PM∥AC,利用平行线性质即可证明;利用①结论即可求得∠BAC的度数.
(2)根据BE、DE平分∠ABD、∠BDC,且∠1+∠2=90°,可得∠ABD+∠BDC=180°,根据同旁内角互补,可得两直线平行.根据∠1+∠2=90°,即∠BED=90°;那么∠3+∠FDE=90°,将等角代换,即可得出∠3与∠2的数量关系.
【解答】解:(1)如图1中,作PM∥AC,
∵AC∥BD,
∴PM∥BD,
∴∠1=∠CPM,∠2=∠MPD,
∴∠1+∠2=∠CPM+∠MPD=∠CPD=∠3.
由题可知:∠BAC=∠B+∠C,
∵∠B=40°,∠C=45°,
∴∠BAC=40°+45°=85°.
故答案为:∠1+∠2=∠3,85°.
(2)证明:∵BE、DE平分∠ABD、∠BDC,
∴∠1=
∠ABD,∠2=
∠BDC;
∵∠1+∠2=90°,
∴∠ABD+∠BDC=180°;
∴AB∥CD;(同旁内角互补,两直线平行)
∵DE平分∠BDC,
∴∠2=∠FDE;
∵∠1+∠2=90°,
∴∠BED=∠DEF=90°;
∴∠3+∠FDE=90°;
∴∠2+∠3=90°.
- 1【354787】初一期末试卷一
- 2【354786】初一期末试卷五
- 3【354785】初一期末试卷四
- 4【354784】初一期末试卷三
- 5【354783】初一期末试卷二
- 6【350123】第6章 知识点梳理
- 7【350122】第5章 知识点梳理
- 8【350121】第4章 知识点梳理
- 9【350120】第3章 知识点梳理
- 10【350119】第2章 知识点梳理
- 11【350118】第1章 知识点梳理
- 12【350117】6.2 方差
- 13【350116】6.1.3 众数
- 14【350115】6.1.2 中位数
- 15【350114】6.1.1 第2课时 加权平均数
- 16【350112】5.3 图形变换的简单应用
- 17【350113】6.1.1 第1课时 平均数
- 18【350111】5.2 旋转
- 19【350110】5.1.2 轴对称变换
- 20【350109】5.1.1 轴对称图形
- 【350108】4.6 两条平行线间的距离
- 【350107】4.5 第2课时 垂线段与点到直线的距离
- 【350106】4.5 第1课时 垂线
- 【350105】4.4 第2课时 平行线的判定方法2,3
- 【350104】4.4 第1课时 平行线的判定方法1
- 【350103】4.3 平行线的性质
- 【350102】4.2 平移
- 【350101】4.1.2 相交直线所成的角
- 【350100】4.1.1 相交与平行
- 【350099】3.3 第2课时 利用完全平方公式进行因式分解
- 【350098】3.3 第1课时 利用平方差公式进行因式分解
- 【350097】3.2 第2课时 提多项式公因式
- 【350096】3.2 第1课时 提单项式公因式
- 【350095】3.1 多项式的因式分解
- 【350094】2.2.3 运用乘法公式进行计算
- 【350093】2.2.2 第2课时 运用完全平方公式进行计算
- 【350092】2.2.2 第1课时 完全平方公式
- 【350091】2.2.1 平方差公式
- 【350090】2.1.4 第2课时 多项式与多项式相乘
- 【350089】2.1.4 第1课时 单项式与多项式相乘