21.6 综合与实践 获取最大利润
【学习目标】
1.探索销售中最大利润问题,从数学角度理解“何时获得最大利润”的意义.
2.经历探究二次函数最大(小)值问题的过程,体会函数的思想方法和数形结合的思想方法.
【学习重点】
对销售中最大利润问题的理解并建立二次函数模型.
【学习难点】
从实际问题中抽象出二次函数模型.
情景导入
初步认知:问题:某商店经营T恤衫,已知成批购进时单价是20元.根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是35元时,销售量是600件,而单价每降低1元,就可以多销售200件.若设降价为x(20≤x≤35的整数)元,该商店所获利润为y元.请你帮助分析,销售单价是多少元时,可以获利最多?
你能运用二次函数的知识解决这个问题吗?
解:由题意得y=(35-x-20)(600+200x),y=-200x2+2400x+9000=-200(x-6)2+16200,当降低6元,即售价29元时,获利最多.
基础知识梳理
阅读教材P52~54页,试填写下面问题:
利用二次函数求最大利润(或收益).
(1)用含自变量的式子分别表示销售单价或销售收入及销售量;(2)用含自变量的式子表示销售的商品的单件利润;(3)用函数及含自变量的式子分别表示销售利润即可得到函数关系式;(4)根据函数关系式求出最大值及取得最大值时自变量的值.
例:某商店将每件进价8元的某种商品按每件10元出售,一天可销出约100件,该店想通过降低售价,增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加约10件.将这种商品的售价降低多少时,能使销售利润最大?
解:设每件商品降价x元(0≤x≤2),该商品每天的利润为y元.商品每天的利润y与x的函数关系式是:y=(10-x-8)(100+100x),即y=-100x2+100x+200,配方得y=-100(x-)2+225,因为x=时,满足0≤x≤2,所以当x=时,函数取得最大值,最大值y=225.所以将这种商品的售价降低元时,能使销售利润最大.
例:某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价在不亏本的情况下不得高于55元.市场调查发现,若每箱以50元的价格销售,平均每天能卖出90箱,价格每提高1元,平均每天少卖3箱,当每箱苹果的销售价为多少元时,可以获得最大利润,最大利润是多少?
解:设每箱苹果的销售价为x元,所获利润为w元,则w=(x-40)[90-3(x-50)]=-3(x-60)2+1200.∵a=-3<0,该抛物线开口向下,由题意可知当x=55元/箱时,w最大=-3×(55-60)2+1200=1125(元).
变式:某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx-75.其图象如图所示.
(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?
(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?
解:(1)y=ax2+bx-75图象过点(5,0),(7,16).
∴解得y=-x2+20x-75的顶点坐标是(10,25).当x=10时,y最大=25.
答:销售单价为10元时,该种商品每天的销售利润最大,最大利润为25元.
(2)∵函数y=-x2+20x-75图象的对称轴为直线x=10,
可知点(7,16)关于对称轴的对称点是(13,16).
又∵函数y=-x2+20x-75图象开口向下,∴当7≤x≤13时,y≥16.
答:销售单价不少于7元且不超过13元时,该种商品每天的销售利润不低于16元.
基础知识训练
1.某商店购进一批单价为30元的商品,如果以单价为40元销售,那么半月内可销售400件,根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量就会相应减少20件,那么在半月内这种商品可能获得的最大利润为( C )
A.4000元 B.4250元 C.4500元 D.5000元
2.一件工艺品进价为100元,标价135元出售,每天可售出100件.根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天利润最大,每件需降价的钱数为( A )
A.5元 B.10元 C.0元 D.3600元
本课内容反思
1.收获:________________________________________________________________________
2.困惑:________________________________________________________________________