4.4 用因式分解法解一元二次方程 习题精选(二)
直接开平方法
1.如果(x-2)2=9,则x= .
2.方程(2y-1)2-4=0的根是 .
3.方程(x+m)2=72有解的条件是 .
4.方程3(4x-1)2=48的解是 .
配方法
5.化下列各式为(x+m)2+n的形式.
(1)x2-2x-3=0 .
(2) .
6.下列各式是完全平方式的是( )
A.x2+7n=7
B.n2-4n-4
C.
D.y2-2y+2
7.用配方法解方程时,下面配方错误的是( )
A.x2+2x-99=0化为(x+1)2=0
B.t2-7t-4=0化为
C.x2+8x+9=0化为(x+4)2=25
D.3x2-4x-2=0化为
8.配方法解方程.
(1)x2+4x=-3 (2)2x2+x=0
因式分解法
9.方程(x+1)2=x+1的正确解法是( )
A.化为x+1=0
B.x+1=1
C.化为(x+1)(x+l-1)=0
D.化为x2+3x+2=0
10.方程9(x+1)2-4(x-1)2=0正确解法是( )
A.直接开方得3(x+1)=2(x-1)
B.化为一般形式13x2+5=0
C.分解因式得[3(x+1)+2(x-1)][3(x+1)-2(x—1)]=0
D.直接得x+1=0或x-l=0
11.(1)方程x(x+2)=2(z+2)的根是 .
(2)方程x2-2x-3=0的根是 .
12.如果a2-5ab-14b2=0,则 = .
公式法
13.一元二次方程ax2+bx+c=0(a≠0)的求根公式是 ,其中b2—4ac .
14.方程(2x+1)(x+2)=6化为一般形式是 ,b2—4ac ,用求根公式求得x1= ,x2= ,x1+x2= , ,
15.用公式法解下列方程.
(1)(x+1)(x+3)=6x+4.
(2) .
(3) x2-(2m+1)x+m=0.
16.已知x2-7xy+12y2=0(y≠0)求x:y的值.
综合题
17.三角形两边的长是3,8,第三边是方程x2—17x+66=0的根,求此三角形的周长.
18.关于x的二次三项式:x2+2rnx+4-m2是一个完全平方式,求m的值.
19.利用配方求2x2-x+2的最小值.
20.x2+ax+6分解因式的结果是(x-1)(x+2),则方程x2+ax+b=0的二根分别是什么?
21.a是方程x2-3x+1=0的根,试求的值.
22.m是非负整数,方程m2x2-(3m2—8m)x+2m2-13m+15=0至少有一个整数根,求m
的值.
23.利用配方法证明代数式-10x2+7x-4的值恒小于0.由上述结论,你能否写出三个二次三项式,其值恒大于0,且二次项系数分别是l、2、3.
24.解方程
(1)(x2+x)·(x2+x-2)=24;
(2)
25.方程x2-6x-k=1与x2-kx-7=0有相同的根,求k值及相同的根.
26.张先生将进价为40元的商品以50元出售时,能卖500个,若每涨价1元,就少卖10个,为了赚8 000元利润,售价应为多少?这时,应进货多少?
27.两个不同的一元二次方程x2+ax+b=0与x2+ax+a=0只有一个公共根,则( )
A.a=b
B.a-b=l
C.a+b=-1
D.非上述答案
28.在一个50米长30米宽的矩形荒地上设计改造为花园,使花园面积恰为原荒地面积的寺,试给出你的设计.
29.海洲市出租车收费标准如下
里程x(km) |
0<x≤3 |
3<x≤6 |
x>6 |
单价y(元) |
N |
|
|
(规定:四舍五入,精确到元,N≤15)N是走步价,李先生乘坐出租车打出的电子收费单是:里程11公里,应收29.1元,你能依据以上信息,推算出起步价N的值吗?
30.方程(x-1)(x+2)(x-3)=0的根是 .
31.一元二次方程x2—2x=0的解是( )
A.0
B.2
C.0,-2
D.0,2
32.方程x2+kx—6=0的一根是2,试求另一个根及k的值.
33.方程 是一元二次方程,则这方程的根是什么?
34.x1、x2是方程2x2—3x—6=0的二根,求过A(x1+x2,0)B(0,xl·x2)两点的直线解析式.
35.a、b、c都是实数,满足 ,ax2+bx+c=0,求代数式x2+2x+1的值.
36.a、b、c满足方程组求方程 的解。
37.三个8相加得24,你能用另外三个相同的数字也得同样结果吗?能用8个相同的数字得到1 000吗?能用3个相同的数字得到30吗?
参考答案:
1.x1=5,x2=—l
2.
3.n≥0 4.
5.(1)(x—1)2—4(2)
6.C 7.C
8.(1)方程化为(x+2)2=l,∴x1=—l,x2=—3.
(2)方程化为 配方得 .∴
9.C 10.C
11.(1)x1=2,x2=—2.
(2)x1=3,x2=—1.
12.∵a2—5ab—14b2=0,
∴(a—7b)(a+2b)=0,
∴ a=76或a=—26.
∴
13.
14.2x2+5x—4=0,57, , , ,x1x2=—2.
15.(1) .
(2)
(3) ,
16.∵x2—7xy+12y2=0,
∴(x—3y)(x—4y)=0,
∴ x=3y或x=4y,
∴x:y=3或x:y=4.,
17.由x2—17x+66=0得x1=11,x2=6.但x=11不合题意,故取x=6.
∴三角形周长是17.
18.∵x2+2mx+4—m2是完全平方式,∴4m2—4(4—m2)=0.解之, .
19. ,
∴2x2—x+2的最小值是 。
20.x1=l,x2=—2
21.由题意得a2—3a+l=0,
∴a2—3a=—l,a2+l=30.
∴原式= .
22.原方程可变为[mx—(2m—3)][mx— (m—5)]=0,
∴ 若x1为整数,则 为整数,
∴m=l或m=3.若x2为整数,则 为整数.
∴m=l或m=5.因而m的值是l或3或5.
23. .
∴ .
∴
∴原式<0.
举例略.
24.(1)(x+ x)( x2+ x—2)=24,整理得 (x2+ x)2—2(x2 + x)—24=0,
∴(x2+ x—6)( x2+ x +4).
∴x 2+ x—6=0.x2+ x +4=0由x2+ x—6=0得x1=—3,x2=2.方程x2+ x +4=0无解.
∴原方程的根是x=—3或x=2.
(2) ,即 ,解得 =3或 =2(舍去),
x1=3,x2=—3.∴原方程的根是x=3或x=—3.
25.(1)设方程只有一个根相同,设相同的根是m.
∴有m—6m—k—1=0,①
m2—mk—7=0,②
①—②得(k—6) m=k—6,k≠6时,∴m=1将,m=l代人①得k=—6.
(2)设方程有两个相同的根,则有—k=—6且—k—l=—7.∴k=6.
∴k=—6时,方程有一个相同的根是x=1;k=6时,方程有两个相同的根是x1=7,x2=—1.
26.设涨价x元,则售价定为(50+x)元.依题意列方程得(500—10x)[(50+x)—40]=8 000.解之,x1=30,x2=10.x=30时,50+x=80,售量为500—300=200.x=10时50+x=60,售量为500—100=400.因而,售价定为80元时,进货200个,售价定为60元时,进货400个.
27.D
28.可给出如图所示的设计,求出x即可.由题意,可列出方程 .化简得3x2—95x +375=0,解之x1=4.62,x2=27.04.经检验x=27.04不合题意,舍去,故取x=4.62.
28题图
29.由题意,可列出方程 .
解之,N2—29.1N+191=0.
∴N1=10,N2=19.1(不合题意舍去)
∴起步价是10元.
30.x1=l,x2=—2,x3=3
31.D
32.k=l,另根—3.
33.先确定m=2,∴方程是4x2+6x+l=0.
34.通过解方程可知A( ,0),B(0,—3),∴过AB的直线是y=2x—3.
35.由题意得2—a=0,a2+b+c=0,c+8=0,
∴a=2,b=4,c=—8.
∴x满足2x2+4x—8=0,即x2+2x—4=0.
∴x2+2x+l=4+1=5.
36.a、b是方程=0的根.
∴ .∴ .
∴ ∴a=b=4.
∴原方程为 .方程的根是