当前位置:首页 > 九年级 > 数学试卷

【330962】4.2 平行线分线段成比例(2)

时间:2025-01-21 13:27:35 作者: 字数:2066字
简介:








2 平行线分线段成比例

一、选择题

1.若=,则下列各式一定成立的是(  ).                  

A. B.

C. D.

2.如图,已知ABCDEF,那么下列结论正确的是(  )

A. B.

C. D.

3.如图1所示,在ACE中,BD分别在ACAE上,下列推理不正确的是(  )

ABDCE BBDCE

CBDCE DBDCE

 <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/175/" title="线段" class="c1" target="_blank">线段</a>  <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/175/" title="线段" class="c1" target="_blank">线段</a>

1 2


4.如图2所示,ADABC的中线,ECA边的三等分点,BEAD于点F,则AFFD(  )

A21 B31 C41 D51

5.某同学的身高1.6米,由路灯下向前步行4米,发现自己的影子长2米,则这个路灯的高为(  )

A4.8 B3.2 C0.8 D2

6.已知 <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/175/" title="线段" class="c1" target="_blank">线段</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/175/" title="线段" class="c1" target="_blank">线段</a> 的边 <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/175/" title="线段" class="c1" target="_blank">线段</a> 的延长线上的一点,且 <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/175/" title="线段" class="c1" target="_blank">线段</a> ,则 <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/175/" title="线段" class="c1" target="_blank">线段</a> (  )

A32 B23 C52 D25


二、填空题

7.如图3所示,已知ab,=,=3,则AEEC________.

 <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/175/" title="线段" class="c1" target="_blank">线段</a>  <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/175/" title="线段" class="c1" target="_blank">线段</a>

3 4



8.如图4所示,已知DEBCBFEF32,则ACAE________

ADDB________.




三、解答题

9.已知ADABC的内角平分线,求证:=.

 <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/175/" title="线段" class="c1" target="_blank">线段</a>






10.如图所示,已知ABC中,AEEB13BDDC21ADCE相交于F,求+的值.

 <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/175/" title="线段" class="c1" target="_blank">线段</a>




参考答案

一、选择题

1.B 2.A 3.D 4.C 5.A 6.C

二、填空题

7 8. 32 21

三、解答题

9. 证明CCEADBA的延长线于E,如图所示,

 <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/175/" title="线段" class="c1" target="_blank">线段</a> AECBADDACACE.

BADDAC

∴∠AECACE

ACAE

又由ADCE知=,

.

10. 解 过点DDGABECG

 <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/74/" title="平行线" class="c1" target="_blank">平行线</a> <a href="/tags/175/" title="线段" class="c1" target="_blank">线段</a> ===,而=,

即=,

所以AEDG

从而有AFDF

EFFGCG

故+=+=+1.