第2课时 垂线及其性质
1.理解并掌握垂线的概念及性质,了解点到直线的距离;
2.能够运用垂线的概念及性质进行运算并解决实际问题.(重点、难点)
一、情境导入
如图是教室的一幅图片,黑板相邻两边的夹角等于多少度?这样的两条边所在的直线有什么位置关系?
二、合作探究
探究点一:垂线的概念
【类型一】 运用垂线的概念求角度
如图,直线BC与MN相交于点O,AO⊥BC,∠BOE=∠NOE,若∠EON=20°,求∠AOM和∠NOC的度数.
解析:要求∠AOM的度数,可先求它的余角.由已知∠EON=20°,结合∠BOE=∠NOE,即可求得∠BON.再根据对顶角相等即可求得;要求∠NOC的度数,根据邻补角的定义即可.
解:∵∠BOE=∠NOE,∴∠BON=2∠EON=2×20°=40°,∴∠NOC=180°-∠BON=180°-40°=140°,∠MOC=∠BON=40°.∵AO⊥BC,∴∠AOC=90°,∴∠AOM=∠AOC-∠MOC=90°-40°=50°,∴∠NOC=140°,∠AOM=50°.
方法总结:(1)由两条直线互相垂直可以得出这两条直线相交所成的四个角中,每一个角都等于90°;(2)在相交线中求角度,一般要利用垂直、对顶角相等、余角、补角等知识.
【类型二】 运用垂线的概念判定两直线垂直
如图所示,已知OA⊥OC于点O,∠AOB=∠COD,试判断OB和OD的位置关系,并说明理由.
解析:由于OA⊥OC,根据垂直的定义,可知∠AOC=90°,即∠AOB+∠BOC=90°,又∠AOB=∠COD,则∠COD+∠BOC=90°,即∠BOD=90°,再根据垂直的定义,得出OB⊥OD.
解:OB⊥OD,理由如下:因为OA⊥OC,所以∠AOC=90°,即∠AOB+∠BOC=90°.因为∠AOB=∠COD,所以∠COD+∠BOC=90°,所以∠BOD=90°,所以OB⊥OD.
方法总结:由垂直这一条件可得两条直线相交构成的四个角为直角,反过来,由两条直线相交构成的角为直角,可得这两条直线互相垂直.判断两条直线垂直最基本的方法就是说明这两条直线的夹角等于90°.
探究点二:垂线的画法
如图,平面上有三点A、B、C.
(1)画直线AB,画射线BC (不写作法,下同);
(2)过点A画直线BC的垂线,垂足为G;过点A画直线AB的垂线,交射线BC于点H.
解析:根据垂线的画法“一落、二过、三画”画图即可.
解:如图所示.
方法总结:“一落、二过、三画”:“一落”是指把三角板的一条直角边落在已知直线上;“二过”是指使三角板的另一条直角边过已知点;“三画”是指沿已知点所在的直角边画直线.
探究点三:垂线的性质和点到直线的距离
【类型一】 点到直线的距离的运用
如图,AC⊥BC,AC=3,BC=4,AB=5.
(1)试说出点A到直线BC的距离,点B到直线AC的距离;
(2)点C到直线AB的距离是多少?你能求出来吗?
解析:(1)点A到直线BC的距离就是线段AC的长;点B到直线AC的距离就是线段BC的长;(2) 过点C作CD⊥AB,垂足为D.点C到直线AB的距离就是线段CD的长,可利用面积求得.
解:(1)点A到直线BC的距离是3,点B到直线AC的距离是4;
(2)过点C作CD⊥AB,垂足为D.三角形ABC的面积=BC·AC=AB·CD,所以5CD=3×4,所以CD=.所以点C到直线AB的距离为.
方法总结:点到直线的距离是过这一点作已知直线的垂线,垂线段的长度才是这一点到直线的距离.
【类型二】 “垂线段最短”的实际运用
如图所示,修一条路将A,B两村庄与公路MN连起来,怎样修才能使所修的公路最短?画出线路图,并说明理由.
解析:连接AB,过点B作BC⊥MN即可.
解:连接AB,作BC⊥MN,C是垂足,线段AB和BC就是符合题意的线路图.因为从A到B,线段AB最短,从B到MN,垂线段BC最短,所以AB+BC最短.
方法总结:与垂线段有关的作图,一般是过一点作已知直线的垂线,作图的依据是“垂线段最短”.
三、板书设计
1.垂线的概念
两条直线相交所成的4个角中,如果有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.
2.垂线的作法
3.垂线的性质
过一点有且只有一条直线垂直于已知直线.
在连接直线外一点与直线上各点的线段中,垂线段最短.
4.点到直线的距离
本节课学习了垂线的概念和垂线的性质,垂直是相交的一种特殊情况,要说明两条相交线的位置关系,一般都是垂直.垂线的两条性质中,不要遗漏条件“在同一平面内”,以保证定理的精确性.对于垂线的概念和性质,要让学生理解记忆