【329549】2.4估算 2.5用计算器开方
2.4 估算
2.5用计算器开方
学习目标:
1、会估算一个无理数的大致范围.
3、会利用估算解决一些简单的实际问题.
4、能在具体情境中体验估算和运用计算器检验计算结果的合理性.
预习案
一、课前导学:阅读课本P33-34,完成下列内容。
1、求下列各式的值:
=
=
=
=
=
=
=
=
=
=
=
=
从中你发现了什么规律? 这些数的开方都是的(填:开得尽或开不尽)。
2、(
)2=____(a≥0),(
)3=____(a为任意实数)。
3、如果你碰到一个开方开不尽的数,题目要求有精确度,怎样估算这个数的大小呢?
某地开辟了一块长方形的荒地,新建一个以环保为主题的公园。已知这块荒地的长是宽的2倍,它的面积为400000米2。
(1)公园的宽大约是多少?它有1000米吗?
解:设公园的宽为x米,则它的长为2x米,由题意得:
x·2x
=400000,
2x
=400000,
x
=200000,
x
=
.
那么
≈_________________。所以公园的宽是____________。
(2)如果要求结果精确到10米,它的宽大约是多少?
解:设公园的宽为x米,则有x2=200000
2=
160000 < 200000 < 5002
4402=,
4502=
<
x <
结果精确到10米
注意:结果精确到10米是指估算到十位。
x应为。
(3)该公园中心有一个圆形花圃,它的面积是800平方米,你能估计它的半径吗?(结果精确到1m)
解:设圆形花圃的半径为R米,由题意得:
152=,162
=
<
R <
结果精确到1m
所以圆形花圃的半径为____________。
4、估算下列数的大小。
(1)
(结果精确到1)
解:
93=,103
<
<
。
(2)
(结果精确到0.1)
解:
3.62=,3.72=
<
<
。
5、仿照第4题的做法,判断下列各数的估算是否正确。
(1)
0.066;
(2)
96;
(3)
60.4;
(4)
0.6。
估算开方开不尽的数(即无理数)的方法是:
(1)通过平方或立方运算,采用“夹逼法”,确定真正值所在范围;
(2)根据问题中误差允许的范围内取出近似值。
(3)“精确到”与“误差小于”意义不同。如精确到1m是四舍五入到个位,答案惟一;误差小于1m,答案在真正值左右1m都符合题意,答案不唯一。在本章中误差小于1m就是估算到个位,误差小于10m就是估算到十位。
6、生活经验表明,靠墙摆放梯子时,若梯子底端离墙的距离约为梯子长度的
,则梯子比较稳定。现在有一个长度为6米的梯子,当梯子稳定摆放时,它的顶端能达到5.6米高的墙头吗?(请在右边空白处写出解答过程)
7、你能比较
与
的大小吗?你是怎样想的?
8、按步骤利用计算器计算下列各数:
,,,+1,-π.
二、尝试练习
1、通过估算,比较下面各数的大小.
(1)
与
;
(2)
与3.85.
学习案
一、知识点拨:
1、能通过估算检验计算结果的合理性
2、能估计一个无理数的大致范围
3、能通过估算比较两个数的大小
4、用计算器求平方根和立方根
二、课内训练
1、估算下列数的大小.
(1)
(结果精确到0.1)
; (2)
(结果精确到1).
通过估算,比较
与2.5的大小.
3、利用计算器,求下列各式的值.(结果精确到0.01)
(1);(2);(3);(4).
反馈案
一、基础训练
1、估算
的值(
)
A、在5和6之间 B、在6和7之间 C、在7和8之间 D、在8和9之间
2、a是
的整数部分,b是
的整数部分,则a+b=___
___.
3、比较大小:
(1)
(2)
(3)
(4)
二、拓展提高
1、某开发区是一个长为宽的3倍的长方形,它的面积为120000000平方米。
(1)开发区的宽大约是多少?他有10000m吗?
(2)如果要求误差小于100m,它的宽大约是多少?
(3)开发区内有一个正方形的地块将用来建管理中心,它的规划面积是8500平方米,你能估计一下它的边长吗?(结果精确到1m)
2、先阅读教材第37页“议一议”的内容,然后完成下面的问题:
利用计算器探索.
(1)=__22__;
(2)=__333__;
(3)=__4444__;
……
=999999999__.
- 1【330924】综合平移的坐标表示
- 2【330923】专题练习2:用计算器求平均数
- 3【330921】轴对称的坐标表示
- 4【330922】专题练习1:用计算器求平均数
- 5【330920】中心对称和中心对称图形
- 6【330919】直角三角形全等的判定
- 7【330918】直角三角巷的性质和判定(Ⅰ)
- 8【330917】正方形
- 9【330916】正比例函数的图象和性质
- 10【330915】长丰县2018-2019学年度第二学期期末考试八年级数学参考答案
- 11【330914】用待定系数法确定一次函数表达式
- 12【330913】一次函数知识点总结
- 13【330911】一次函数与一次方程的联系
- 14【330912】一次函数知识点归纳
- 15【330908】新人教版初中数学八年级下册同步练习试题及答案_第20章 数据的分析(22页)
- 16【330910】一次函数的图象和性质
- 17【330909】一次函数
- 18【330907】新人教版八年级数学下第18章《平行四边形》单元试卷
- 19【330906】新人教版八年级数学下第16章《二次根式》单元试卷
- 20【330904】湘教版八年级数学下《第5章数据的频数分布》单元试卷含答案
- 【330905】湘教版八年级数学下册全册综合测试题
- 【330903】湘教版八年级数学下《第3章图形与坐标》单元试卷含答案
- 【330901】湘教版八年级数学下《第1章直角三角形》单元试卷含答案
- 【330902】湘教版八年级数学下《第2章四边形》单元试卷含答案
- 【330900】五种类型一次函数解析式的确定
- 【330899】同步练习试题及答案_第19章 一次函数(10页)
- 【330898】同步练习试题及答案_第18章 平行四行形(40页)
- 【330897】同步练习试题及答案_第17章 勾股定理(20页)
- 【330896】同步练习试题及答案_第16章 二次根式(19页)
- 【330894】思想方法专题:直角三角形中的思想方法
- 【330895】特殊平行四边形知识点归纳
- 【330893】思想方法专题:矩形中的折叠问题
- 【330892】思想方法专题:勾股定理中的思想方法
- 【330891】数学培优辅差工作计划3
- 【330890】数学培优辅差工作计划2
- 【330889】数学培优辅差工作计划1
- 【330888】三角形的中位线
- 【330887】人教版数学八年级上同期末达标检测卷2
- 【330886】人教版数学八年级上同期末达标检测卷1
- 【330885】人教版数学八年级上册期中达标测试卷