第18章学情评估
一、选择题(每题3分,共24分)
1.如图,在▱ABCD中,AD=5 cm,AB=3 cm,则▱ABCD的周长等于( )
A.8 cm B.16 cm C.15 cm D.30 cm
(第1题) (第2题) (第3题)
2.如图,四边形ABCD是平行四边形,点E在线段BC的延长线上.若∠A=48°,则∠DCE=( )
A.142° B.132° C.122° D.112°
3.如图,在▱ABCD中,下列结论一定正确的是( )
A.AC⊥BD B.∠DAB+∠ABC=180°
C.AB=AD D.∠BAD≠∠BCD
4.已知▱ABCD的对角线AC,BD相交于点O,若AB=3 cm,AC+BD=12 cm,则△COD的周长为( )
A.9 cm B.12 cm C.15 cm D.30 cm
5.如图,在四边形ABCD中,CE平分∠BCD交AD于点E,DE=CD,添加下列一个条件后,一定能判定四边形ABCD是平行四边形的是( )
A.AD=BC B.AB=CD C.CE=BC D.∠A=∠D
(第5题) (第6题)
6.如图,l1∥l2,AB∥CD,CE⊥l2于点 E,FG⊥l2于点G.则下列说法中错误的是( )
A.AB=CD
B.CE=FG
C.A,B两点间距离就是线段AB的长度
D.l1与l2之间的距离就是线段CD的长度
7.如图,在▱ABCD中,将△ADC沿AC折叠,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为( )
A.12 B.15 C.18 D.21
(第7题) (第8题)
8.如图,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连结AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③四边形ABCD是平行四边形;④图中共有四对全等三角形.其中正确的个数是( )
A.4 B.3 C.2 D.1
二、填空题(每题3分,共18分)
9.如图,AO=OC,BD=6 cm,则当OB=________cm时,四边形ABCD是平行四边形.
(第9题) (第10题)
10.如图,在▱ABCD中,对角线BD=8 cm,AE⊥BD,垂足为E,若AE=3 cm,则▱ABCD的面积为________cm2.
11.在▱ABCD中,若∠A=3∠B,则∠C=________.
12.如图,将▱ABCD沿对角线AC折叠,使点B落在点B′处,若∠1=∠2=42°,则∠B=________°.
(第12题) (第13题)
13.如图,△ABC的面积为24,点D在边AC上,点F在BC的延长线上,且BC=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为________.
14.如图,Rt△ABC中,∠BAC=90°,AB=6,AC=8,点P为BC上任意一点,连结PA,以PA,PC为邻边作平行四边形PAQC,连结PQ,则PQ的最小值为________.
(第14题)
三、解答题(15、16题每题8分,17~21题每题10分,22题12分,共78分)
15.如图,在▱ABCD中,E,F是对角线BD上两点,且BE=DF,求证:AE=CF.
(第15题)
16.如图,▱ABCD的对角线AC与BD相交于点O,AC+BD=24,∠ABC=70°,△ABO的周长是20.
(1)求∠ADC的度数;
(2)求AB的长.
(第16题)
17.如图,在▱ABCD中,对角线AC,BD相交于点O,且AC=6,BD=10,AB=4.
(第17题)
(1)求∠BAC的度数;
(2)求▱ABCD的面积.
18.如图,在▱ABCD中,E,F是对角线BD上的两点,BE=DF,点G,H分别在BA和DC的延长线上,且AG=CH,连结GE,EH,HF,FG.求证:四边形GEHF是平行四边形.
(第18题)
19.如图,在四边形ABCD中,∠ADB=∠CBD=90°,BE∥CD交AD于点E,且EA=EB.若AB=,DB=4,求四边形ABCD的面积.
(第19题)
20.如图是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点为格点,线段AB的端点都在格点上,要求以AB为边画平行四边形,且另外两个顶点在格点上,请在下面的网格图中画出4种不同的图形.
(第20题)
21.如图,在▱ABCD中,AB= cm,BC=12 cm,∠B=45°,点P在边BC上,由点B向点C运动,速度为每秒2 cm,点Q在边AD上,与点P同时出发,由点D向点A运动,速度为每秒1 cm,连结PQ,设运动时间为t s.
(1)当t为何值时,四边形ABPQ为平行四边形?
(2)设四边形ABPQ的面积为y cm2,请用含有t的代数式表示y.(不必写出t的取值范围)
(3)当点P运动至何处时,四边形ABPQ的面积是▱ABCD面积的四分之三?
(第21题)
22.已知△ABC是等边三角形,D是BC边上的一个动点(点D不与点B,C重合),△ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC于点E,连结BF.
(1)如图①,求证:△AFB≌△ADC.
(2)请判断图①中四边形BCEF的形状,并说明理由.
(3)若点D在BC边的延长线上,如图②,其他条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.
(第22题)
答案
一、1.B 2.B 3.B 4.A 5.A 6.D 7.C 8.B
二、9.3 10.24 11.135° 12.117
13.6 点拨:∵四边形 DCFE 是平行四边形,
∴DE=CF,DE∥CF,∴△DEB的面积为四边形 DCFE面积的一半.∵BC=4CF,∴DE=BC.
设△ABC中BC边上的高为h,则S△ADE+S△DEB=DE·h=·BC·h=S△ABC=×24=6.
14. 思路点睛:设PQ,AC交于点D,∵四边形PAQC是平行四边形,∴PD=PQ,点D是AC的中点,为定点,由垂线段最短可知,当PD⊥BC时,PD取得最小值,此时PQ也取得最小值.
三、15.证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF.在△ABE和△CDF中,
∵AB=CD,∠ABE=∠CDF,BE=DF,
∴△ABE≌△CDF,∴AE=CF.
16.解:(1)∵四边形ABCD是平行四边形,
∴∠ABC=∠ADC.∵∠ABC=70°,∴∠ADC=70°.
(2)∵四边形ABCD是平行四边形,∴AO=CO,BO=DO.∵AC+BD=24,∴2AO+2BO=24,∴AO+BO=12.∵△ABO的周长是20,即AO+BO+AB=20,∴AB=8.
17.解:(1)∵在▱ABCD中,对角线AC,BD相交于点O,且AC=6,BD=10,
∴BO=OD=BD=5,AO=OC=AC=3,
又∵AB=4,∴BO2=AO2+AB2,∴∠BAC=90°.
(2)S▱ABCD=2S△ABC=2×AC·AB=24.
18.证明:∵四边形ABCD是平行四边形,∴AB綊CD,
∴∠GBE=∠HDF.
∵AG=CH,∴AB+AG=CD+CH,即BG=DH.
又∵BE=DF,∴△GBE≌△HDF,
∴GE=HF,∠GEB=∠HFD,∴∠GEF=∠HFE,
∴GE∥HF,∴四边形GEHF是平行四边形.
19.解:∵∠ADB=∠CBD=90°,∴DE∥CB.
∵BE∥CD,∴四边形BEDC是平行四边形.
∴BC=DE.在Rt△ABD中,由勾股定理,得
AD===8.
设DE=x,则EA=8-x,∴EB=EA=8-x.
在Rt△BDE中,由勾股定理,得 DE2+DB2=EB2,
∴x2+42=(8-x)2,解得x=3,∴BC=DE=3,
∴S四边形ABCD=S△ABD+S△BDC=AD·DB+DB·BC
=16+6=22.
20.解:如图.
(第20题)
21.解:(1)由已知可得BP=2t cm,DQ=t cm,
AD=BC=12 cm,∴AQ=(12-t)cm.
∵四边形ABPQ为平行四边形,
∴BP=AQ,即2t=12-t,∴t=4,
∴当t=4时,四边形ABPQ为平行四边形.
(2)过点A作AE⊥BC于点E.
在Rt△ABE中,∠AEB=90°,∠B=45°,∴AE=BE.
由勾股定理,得AB2=AE2+BE2,∴AE=1 cm.
∴S四边形ABPQ=(BP+AQ)·AE=(12+t)cm2,
即y=(12+t)=t+6.
(3)由(2)得S▱ABCD=1×12=12(cm2).
由题意得×12=t+6,∴t=6,∴BP=2×6=12(cm).此时BP=BC,即当点P运动至点C时,四边形ABPQ的面积是▱ABCD面积的四分之三.
22.(1)证明:∵△ABC 和△ADF都是等边三角形,
∴AF=AD,AB=AC,∠FAD=∠BAC=60°.
又∵∠FAB=∠FAD-∠BAD,∠DAC=∠BAC-∠BAD,∴∠FAB=∠DAC.在△AFB 和△ADC中,∴△AFB≌△ADC.
(2)解:四边形BCEF是平行四边形.
理由:由(1)得△AFB≌△ADC,∴∠ABF=∠C=60°.
又∵∠BAC=60°,∴∠ABF=∠BAC.∴FB∥AC.
又∵BC∥EF,∴四边形BCEF是平行四边形.
(3)解:成立,理由如下:∵△ABC和△ADF都是等边三角形,∴AF=AD,AB=AC,∠FAD=∠BAC=60°.
又∵∠FAB=∠BAC-∠FAC,∠DAC=∠FAD-∠FAC,∴∠FAB=∠DAC.在△AFB和△ADC中,
∴△AFB≌△ADC.∴∠AFB=∠ADC.
∵∠ADC+∠DAC=60°,∠EAF+∠DAC=60°,
∴∠ADC=∠EAF.∴∠AFB=∠EAF.∴BF∥AE.
又∵BC∥EF,∴四边形 BCEF 是平行四边形.