2.2.1平行四边形的性质
第一课时
教学目标
1、使学生理解并掌握平行四边形的定义;能根据定义探究平行四边形的性质;了解平行四边形在生活中的实例,由平行四边形的性质解决简单的实际问题。
2、发展学生的抽象思维和形象思维,进行简单的计算与证明,通过观察、实验、归纳、证明,合乎逻辑地进行讨论与质疑,培养学生的推理能力与演绎能力。
3、在应用平行四边形的性质中培养独立思考的习惯,在数学学习活动中获得成功的体验。用平行四边形的性质的应用,进一步认识数学与生活的密切联系。
教学重难点
重点:平行四边形的定义,对角、对边相等的性质,以及性质的应用
难点:运用平行四边形的性质进行有关的论证和计算
教学过程
一、知识回顾(出示ppt课件)
1、什么叫四边形:在平面内,由不在同一条直线上的四条线段首尾顺次相接组成的图形叫作四边形.
2 、四边形的边: 。
四边形的角: 。
四边形的顶点: 。
3、四边形的对角线:连接不相邻两个顶点的线段。
四边形共有2条对角线。
4、四边形的内角和: ,外角和: 。
二、新知学习(出示ppt课件)
我 们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?
平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?
定义:两组对边分别平行的四边形是平行四边形.
(2)表示方法:平行四边形用符号“ ”来表示.
平行四边形不相邻的两个顶点连成的线段叫平行四边形的对角线.
线段AC、BD就是□ABCD的两条对角线.
平行四边形相对的边称为对边, 相对的角称为对角.
AB与CD; BC与DA是对边;∠ABC与∠CDA; ∠BAD与∠DCB分别是角;
如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”.
三、探究交流(出示ppt课件)
平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.
1、做一做:每位同学根据定义画一个平行四边形,测量平行四边形四条边的长度、四个角的大小,由此你能做出什么猜测?
通过观察和测量,我们得到下面结论:∠ A=∠C,∠B=∠D,AB=CD,BC=AD
也 就是说:平行四边形的对边相等、对角相等.
2、下面我们来证明这个结论.
在如图的□ABCD中,连接AC.
∵ 四边形ABCD为平行四边形,
∴ AB∥DC ,BC∥AD(平行四边形的两组对边分别平行).
∴ ∠1=∠2 , ∠4=∠3. 又 AC =CA,
∴ △ABC≌△CDA.(ASA) ∴ AB = CD,BC = DA,∠B =∠D.
又∠1+∠4=∠2+∠ 3. 即∠BAD=∠DCB.
由 此得到平行四边形的性质定理:平行四边形对边相等,对角相等.
几何语言:如图,在□ABCD中,AB∥CD,AD∥BC
AB = CD,BC = DA,∠A=∠C. ∠B =∠D.
四、知识应用(出示ppt课件)
例 1、如图,四边形ABCD和BCEF均为平行四边形,
AD=2cm,∠A=65°,∠E=33°,求EF和∠BGC。
解:∵ 四边形ABCD是平行四边形,
∴ AD = BC = 2cm,∠1=∠A = 65°.
∵ 四边形BCEF是平行四边形,
∴ EF = BC = 2cm ,∠2 =∠E = 33°.
∴ 在△BGC中,∠BGC = 180°-∠1 -∠2 = 82°.
例 2、如图,直线l1与l2平行,AB、CD是l1与l2之间的任意两条平行线段。试问:AB与CD是否相等?为什么?
解:相等。
证明:因为l1∥l2,AB∥CD,
所以四边形ABCD是平行四边形.
所以AB=CD
归纳:夹在两平行线间的平行线段相等。、
问:上题中若AB、CD 都垂直于l1与l2,则可得到什么结论?
归纳:1、线段AB、CD叫做l1与l2的公垂线段。
2、两平行线的所有公垂线段相等。
五、巩固练习(出示ppt课件)
六、课堂小结(出示ppt课件)
1、平行四边形的概念。
2、平行四边形的性质定理及其应用。
3、两条平行线的距离。
4、学法指导:在条件中有“平行四边形”你应该想到什么?
七、作业:p44练习,p49 A 1、2、3
第二课时
教学目标
1、掌握平行四边形对角线互相平分的性质;能运用平行四边形的性质解决平行四边形的有关计算问题和简单的证明题;培养学生的推理论证和逻辑思维能力。
2、经历探索平行四边形的性质的过程,发展学生的探究意识和合情推理的能力。
3、培养严谨的推理能力,和合作交流的习惯,体会平行四边形的实际应用价值。
教学重难点
重点:平行四边形对角线的性质定理。
难点:能综合运用、有关计算问题和简单的证明题。
教学过程
一、知识回顾(出示ppt课件)
1、平行四边形有关概念:
定义:两组对边分别平行的四边形叫作平行四边形。
不相邻的两个顶点连成的线段叫它的对角线。
平 行四边形ABCD, 记为“□ABCD”, 读作“平行四边形ABCD”, 线段AC,BD称为对角线。
2、平行四边形性质:
(1)平行四边形的两组对边分别平行;
(2)平行四边形的对边相等,
(3)平行四边形的对角相等,(4)相邻两角互补。
几何语言:∵四边形ABCD是平行四边形,∴ AB∥CD;AD∥BC;
AB=CD;AD=BC;∠BAC= ∠BCD;∠ABC= ∠ADC。
二 、情境问题(出示ppt课件)
一位饱经苍桑的老人,经过一辈子的辛勤劳动,
到晚年的时候,终于拥有了一块平行四边形的土地,
由于年迈体弱,他决定把这块土地分给他的四个孩子,
他是这样分的:
当 四个孩子看到时,争论不休,都认为自己的地少,同学们,你认为老人这样分合理吗?为什么?
三、探究交流(出示ppt课件)
如图,四边形ABCD是平行四边形,它的两条
对角线AC与BD相交于点O. 比较OA ,OC ,
OB ,OD 的长度,有哪些线段相等?你能作出什么猜测?
(1)在AC与BD画好后,细心观察,鼓励学生应用多种方式探索平行四边形的性质,可用三角板量一量,也可采用其他的方法。
(2)把两张完全相同的平行四边形纸片叠合在一起,在它们的中心O 钉一个图钉,将一个平行四边形绕O旋转180°,你发现了什么?
发现:OA=OC,OB=OD,点O 是每条对角线的中点,即:对角线互相平分。
( 3)证明猜测的正确性:
如上图,∵四边形ABCD是平行四边形,
∴AB=CD,且AB∥CD.∴ ∠1=∠2,∠3=∠4.
∴ △OAB≌△OCD.(ASA) ∴ OA=OC,OB=OD.
由此得到平行四边形的性质定理:平行四边形的对角线互相平分.
符号语言:∵ 四边形ABCD是平行四边形
∴ OA=OC OB=OD
四、知识应用(出示ppt课件)
例 1 如图,在□ABCD中,对角线AC与BD相交于点O,AC=6,BD=10,CD=4.8. 试求△COD的周长.
解:∵ AC,BD为平行四边形ABCD的对角线,
∴OC= AC=3,OD= BD=5 又∵ CD = 4.8,
∴ △COD的周长为3 + 5 + 4.8 = 12.8.
例2、 如图,在□ABCD中,对角线AC 与BD相交于点O,过点O的直线MN分别交AD,BC于点M,N.求证:点O是线段MN的中点.
证 明:∵ AC,BD为□ABCD的对角线,且相交于点O,
∴ OA = OC
∵ AD∥BC,∴ ∠MAO =∠NCO.
又∠AOM=∠CON,
∴ △AOM≌△CON. ∴ OM= ON.
∴ 点O是线段MN的中点.
例 3、平行四边形一条对角线的两个端点到另一条
对角线的距离相等吗?为什么?
答:相等.
已知 如图,在□ABCD中,对角线AC与BD
相交于点O,BN⊥AC于点N,DM⊥AC
于点M, 求证:DM=BN
证明: ∵ AC,BD为□ABCD的对角线,∴ OB = OD
又 ∵ DM⊥AC于点M,DN⊥AC于点N .
∴ ∠DMO=∠BNO=90°,又 ∠AOD=∠COB,
∴ Rt△DOM≌Rt△BON(AAS). ∴ DM = BN.
回到情境问题:作AE⊥BD,
S△AOD= S△AOB= S△BOC= S△COD 老人分地是合理的。
五、巩固练习(出示ppt课件)
六、课堂小结(出示ppt课件)结合平行四边形的定义和三个性质进行叙述:
七、作业:p44练习,p49 A 4 B 7