第1章 全等三角形
单元测试
一.填空题(每题3分,共30分)
1.如图(1),△ABC≌△DBC,且∠A和∠D,∠ABC和∠DBC是对应角,其对应边:_______.
(1) (2) (3)
2.如图(2),△ABD≌△ACE,且∠BAD和∠CAE,∠ABD和∠ACE,∠ADB和∠AEC是对应角,则对应边_________.
3. 已知:如图(3),△ABC≌△FED,且BC=DE.则∠A=__________,A D=_______.
4. 如图(4),△ABD≌△ACE,则AB的对应边是_________,∠BAD的对应角是______.
(4) (5) (6)
5. 已知:如图(5),△ABE≌△ACD,∠B=∠C,则∠AEB=_______,AE=________.
6.已知:如图(6) , AC⊥BC于C , DE⊥AC于E , AD⊥AB于A , BC=AE.若AB=5 , 则AD=___________.
7.已知:△ABC≌△A’B’C’, △A’B’C’的周长为12cm,则△ABC的周长为 .
8.如图(7), 已知:∠1=∠2 , ∠3=∠4 , 要证BD=CD , 需先证△AEB≌△A EC , 根据是_________再证△BDE≌△______ , 根据是__________.
(7) (8) (9)
9.如图(8),∠1=∠2,由AAS判定△ABD≌△ACD,则需添加的条件是____________.
10.如图(9),在平面上将△ABC绕B点旋转到△A’BC’的位置时,AA’∥BC,∠ABC=70°,则∠CBC’为________度.
二.选择题(每题3分,共30分)
11、下列条件中,不能判定三角形全等的是 ( )
A.三条边对应相等 B.两边和一角对应相等
C.两角的其中一角的对边对应相等 D.两角和它们的夹边对应相等
12. 如果两个三角形全等,则不正确的是 ( )
A.它们的最小角相等 B.它们的对应外角相等
C.它们是直角三角形 D.它们的最长边相等
13. 如图,已知:△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是 ( )
A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE
14. 图中全等的三角形是 ( )
A.Ⅰ和Ⅱ B.Ⅱ和Ⅳ C.Ⅱ和Ⅲ D.Ⅰ和Ⅲ
15. 下列说法中不正确的是 ( )
A.全等三角形的对应高相等 B.全等三角形的面积相等
C.全等三角形的周长相等 D.周长相等的两个三角形全等
16. AD=AE , AB=AC , BE、CD交于F , 则图中相等的角共有(除去∠DFE=∠BFC) ( )
A.5对 B.4对 C.3对 D.2对
17.如图,OA=OB,OC=OD, ∠O=60°, ∠C=25°则∠BED的度数是 ( )
A.70° B. 85° C. 65° D. 以上都不对
18. 已知:如图(18),△ABC≌△DEF,AC∥DF,BC∥EF.则不正确的等式是 ( )
A.AC=DF B.AD=BE C.DF=EF D.BC=EF
(18) (19) (20)
19.如图(19) , ∠A=∠D , OA=OD , ∠DOC=50°, 求∠DBC的度数为 ( )
A.50° B.30° C.45° D.25°
20. 如图(20) , ∠ABC=∠DCB=70°, ∠ABD=40°, AB=DC , 则∠BAC= ( )
A.70° B.80° C.100° D.90°
三.解答题(每题8分,共40分)
21. 已知:如图 , 四边形ABCD中 , AB∥CD , AD∥BC.求证:△ABD≌△CDB.
22. 如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连结AC并延长到D,使CD=CA.连结BC并延长到E,使EC=CB,连结DE,量出DE的长,就是A、B的距离.写出你的证明.
23. 已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.求证:AC∥DF.
24. 如图,已知: AD是BC上的中线 ,且DF=DE.求证:BE∥CF.
2 5.如图, 已知:AB⊥BC于B , EF⊥AC于G , DF⊥BC于D , BC=DF.求证:AC=EF.
参考答案
1.BC和BC,CD和CA,BD和AB
2.AB和AC,AD和AE,BD和CE
3. ∠F,CF
4.AC, ∠CAE
5. ∠ADC,AD
6.5
7.12
8.ASA DEC SAS
9. ∠B=∠C
10.40℃
11.B 12.C 13.D 14.D 15.D 16.B 17. A 18.C 19.D 20.B
21.由ASA可证
22. 因为AC=CD EC=BC ∠ACB=∠ECD 所以 △ABC≌△CED AB=ED
23.证△ABC≌△FED得∠ACB=∠F 所以AC∥DF
24.证△BED≌△CFD得∠E=∠CFD 所以CF∥BE
25.由AAS证△ABC≌△CED AC=EF.