【333844】解题技巧专题:平面直角坐标系中的图形面积
解题技巧专题:平面直角坐标系中的图形面积
——代几结合,突破面积及点的存在性问题
类型一 直接利用面积公式求图形的面积
1.如图,在平面直角坐标系中,三角形ABC的面积是( )
A.2 B.4 C.8 D.6
第1题图
第2题图
2.如图,在平面直角坐标系xOy中,已知A(-1,5),B(-1,0),C(-4,3),则三角形ABC的面积为________.
类型二 利用分割法求图形的面积
3.如图,在平面直角坐标系中,点A(4,0),B(3,4),C(0,2),则四边形ABCO的面积为________.
4.观察下图,图中每个小正方形的边长均为1,回答以下问题:【方法14】
(1)写出多边形ABCDEF各个顶点的坐标;
(2)线段BC,CE的位置各有什么特点?
(3)求多边形ABCDEF的面积.
类型三 利用补形法求图形的面积
5.在如图所示的正方形网格中,每个小正方形的边长均为1,三角形ABC的三个顶点恰好是正方形网格的格点.【方法14】
(1)写出三角形ABC各顶点的坐标;
(2)求出此三角形的面积.
类型四 与图形面积相关的点的存在性问题
6.(2017·定州市期中)如图,A(-1,0),C(1,4),点B在x轴上,且AB=3.
(1)求点B的坐标;
(2)求三角形ABC的面积;
(3)在y轴上是否存在点P,使以A,B,P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标;若不存在,请说明理由.
参考答案与解析
1.B 2.
3.11 解析:过点B作BD⊥x轴于D.∵A(4,0),B(3,4),C(0,2),∴OC=2,BD=4,OD=3,OA=4,∴AD=OA-OD=1,则S四边形ABCO=S梯形OCBD+S三角形ABD=×(4+2)×3+×1×4=9+2=11.
4.解:(1)A(-2,0),B(0,-3),C(3,-3),D(4,0),E(3,3),F(0,3).
(2)线段BC平行于x轴(或线段BC垂直于y轴),线段CE垂直于x轴(或线段CE平行于y轴).
(3)S多边形ABCDEF=S三角形ABF+S长方形BCEF+S三角形CDE=×(3+3)×2+3×(3+3)+×(3+3)×1=6+18+3=27.
5.解:(1)A(3,3),B(-2,-2),C(4,-3).
(2)如图,分别过点A,B,C作坐标轴的平行线,交点分别为D,E,F.S三角形ABC=S正方形DECF-S三角形BEC-S三角形ADB-S三角形AFC=6×6-×6×1-×5×5-×6×1=.
6.解:(1)点B在点A的右边时,-1+3=2,点B在点A的左边时,-1-3=-4,所以点B的坐标为(2,0)或(-4,0).
(2)S三角形ABC=×3×4=6.
(3)存在这样的点P.设点P到x轴的距离为h,则×3h=10,解得h=.点P在y轴正半轴时,P,点P在y轴负半轴时,P,综上所述,点P的坐标为或.
- 1【354787】初一期末试卷一
- 2【354786】初一期末试卷五
- 3【354785】初一期末试卷四
- 4【354784】初一期末试卷三
- 5【354783】初一期末试卷二
- 6【350123】第6章 知识点梳理
- 7【350122】第5章 知识点梳理
- 8【350121】第4章 知识点梳理
- 9【350120】第3章 知识点梳理
- 10【350119】第2章 知识点梳理
- 11【350118】第1章 知识点梳理
- 12【350117】6.2 方差
- 13【350116】6.1.3 众数
- 14【350115】6.1.2 中位数
- 15【350114】6.1.1 第2课时 加权平均数
- 16【350112】5.3 图形变换的简单应用
- 17【350113】6.1.1 第1课时 平均数
- 18【350111】5.2 旋转
- 19【350110】5.1.2 轴对称变换
- 20【350109】5.1.1 轴对称图形
- 【350108】4.6 两条平行线间的距离
- 【350107】4.5 第2课时 垂线段与点到直线的距离
- 【350106】4.5 第1课时 垂线
- 【350105】4.4 第2课时 平行线的判定方法2,3
- 【350104】4.4 第1课时 平行线的判定方法1
- 【350103】4.3 平行线的性质
- 【350102】4.2 平移
- 【350101】4.1.2 相交直线所成的角
- 【350100】4.1.1 相交与平行
- 【350099】3.3 第2课时 利用完全平方公式进行因式分解
- 【350098】3.3 第1课时 利用平方差公式进行因式分解
- 【350097】3.2 第2课时 提多项式公因式
- 【350096】3.2 第1课时 提单项式公因式
- 【350095】3.1 多项式的因式分解
- 【350094】2.2.3 运用乘法公式进行计算
- 【350093】2.2.2 第2课时 运用完全平方公式进行计算
- 【350092】2.2.2 第1课时 完全平方公式
- 【350091】2.2.1 平方差公式
- 【350090】2.1.4 第2课时 多项式与多项式相乘
- 【350089】2.1.4 第1课时 单项式与多项式相乘