【347880】3.4 实际问题与一元一次方程(1)
3.4 实际问题与一元一次方程(1)
基础检测
1.一商店把彩电按标价的9折出售,仍可获利20%,若该彩电的进价是2400元,则彩电的标价为_______元.
2.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%优惠卖出)销售,结果每件服装仍可获利15元,则这种服装每件的成本价是______元.
3.某药店经营的抗病毒药品,在市场紧缺的情况下提价100%,物价部门查处后,限定其提价的幅度只能是原价的10%,则该药品现在降价的幅度是( )
A.55% B.50% C.90% D.95%
磁悬浮列车是一种科技含量很高的新型交通工具,它具有速度快、爬坡能力强、能耗低的特点,它每个座位的平均能耗仅为飞机每个座位的平均能耗的三分之一,是汽车每个座位的平均能耗的70%,那么汽车每个座位的平均能耗是飞机每个座位平均能耗的( )
A.
B.
C.
5.某企业生产一种产品,每件成本是400元,销售价为510元,本季度销售300件,为进一步扩大市场,企业决定在降低销售价的同时降低生产成本,经过市场调研,预测下季度这种产品每件销售价降低4%,销售量将提高10%,要使销售利润保持不变,该产品每件成本应降低多少元?
6.某商场出售的A型冰箱每台售价2190元,每日耗电量为1度,而B型节能冰箱每台售价虽比A型冰箱高出10%,但是每日耗电量却为0.55度,现将A型冰箱打折出售,问商场至少打几折,消费者购买才合算?(按使用期为10年,每年365天,每度电费按0.40元计算)
7.一商店以每3盘16元钱的价格购进一批录音带,又从另外一处以每4盘21元价格购进前一批数据加倍的录音带,如果以每3盘k元的价格全部出售可得到所投资的20%的收益,求k值.
拓展提高
8.(经典题)小刚为书房买灯,现有两种灯可供选购,其中一种是9瓦(即0.009千瓦)的节能灯,售价为49元/盏;另一种是40瓦(即0.04千瓦)的白炽灯,售价为18元/盏.假设两种灯的照明亮度一样,使用寿命都可以达到2800小时,已知小刚家所在地的电价是每千瓦时0.5元.
(1)设照明时间是x小时,请用含x的代数式分别表示用一盏节能灯的费用和用一盏白炽灯的费用(注:费用=灯的售价+电费);
(2)小刚想在这两种灯中选购一盏:
①当照明时间是多少时,使用两种灯的费用一样多;
②试用特殊值判断:
照明时间在什么范围内,选用白炽灯费用低;
照明时间在什么范围内,选用节能灯费用低.
(3)小刚想在这两种灯中选购两盏:假定照明时间是3000小时,使用寿命都是2800小时,请你帮他设计费用最低的选灯方案,并说明理由.
3.4 实际问题与一元一次方程(1)
1.3200 2.125元 3.A 4.C
5.产品成本降低x元,得[510×(1-4%)-(400-x)]×(1+10%)m=(510-400)m,
x=10.4(元)
6.设打x折,依题意得方程2190x+1×10×0.4×365=1.1×2190+0.55×10×365×0.4,x=0.8,至少打8折.
7.设第一次购进的m盘录音带,第二次购进2m盘录间带,
得
·(1+20%),k=19.
8.(1)用一盏节能灯的费用是(49+0.0045x)元,用一盏白炽灯的费用是(18+0.02x)元.
(2)①由题意,得49+0.0045x=18+0.02x,解得x=2000.所以当照明时间是2000小时,两种灯的费用一样多;
②取特殊值x=1500小时,则用一盏节能灯的费用是49+0.0045×1500=55.75(元).
用一盏白炽灯的费用是18+0.02×1500=48(元).
所以当照明时间小于2000小时时,选用白炽灯费用低;取特殊值x=2500小时,
则用一盏节能灯的费用是49+0.0045×2500=60.25(元).
用一盏白炽灯的费用是18+0.02×2500=68(元).
所以当照明时间超过2000小时时,选用节能灯费用低.
(3)分下列三种情况讨论:
①如果选用两盏节能灯,则费用是98+0.0045×3000=111.5(元);
②如果选用两盏白炽灯,则费用是36+0.02×3000=96(元);
③如果选用一盏节能灯和一盏白炽灯,由(2)可知,当照明时间大于2000小时时,用节能灯比白炽灯费用低,所以节能灯用足2800小时,费用最低,费用是67+0.0045×2800+0.02×200=83.6(元).
综上所述,应各选用一盏灯,且节能灯使用2800小时,白炽灯使用200小时时,费用最低.
www.ishijuan.cn 爱试卷为中小学老师学生提供免费的试卷下载关注”试卷家“微信公众号免费下载试卷
- 1【354787】初一期末试卷一
- 2【354786】初一期末试卷五
- 3【354785】初一期末试卷四
- 4【354784】初一期末试卷三
- 5【354783】初一期末试卷二
- 6【350123】第6章 知识点梳理
- 7【350122】第5章 知识点梳理
- 8【350121】第4章 知识点梳理
- 9【350120】第3章 知识点梳理
- 10【350119】第2章 知识点梳理
- 11【350118】第1章 知识点梳理
- 12【350117】6.2 方差
- 13【350116】6.1.3 众数
- 14【350115】6.1.2 中位数
- 15【350114】6.1.1 第2课时 加权平均数
- 16【350112】5.3 图形变换的简单应用
- 17【350113】6.1.1 第1课时 平均数
- 18【350111】5.2 旋转
- 19【350110】5.1.2 轴对称变换
- 20【350109】5.1.1 轴对称图形
- 【350108】4.6 两条平行线间的距离
- 【350107】4.5 第2课时 垂线段与点到直线的距离
- 【350106】4.5 第1课时 垂线
- 【350105】4.4 第2课时 平行线的判定方法2,3
- 【350104】4.4 第1课时 平行线的判定方法1
- 【350103】4.3 平行线的性质
- 【350102】4.2 平移
- 【350101】4.1.2 相交直线所成的角
- 【350100】4.1.1 相交与平行
- 【350099】3.3 第2课时 利用完全平方公式进行因式分解
- 【350098】3.3 第1课时 利用平方差公式进行因式分解
- 【350097】3.2 第2课时 提多项式公因式
- 【350096】3.2 第1课时 提单项式公因式
- 【350095】3.1 多项式的因式分解
- 【350094】2.2.3 运用乘法公式进行计算
- 【350093】2.2.2 第2课时 运用完全平方公式进行计算
- 【350092】2.2.2 第1课时 完全平方公式
- 【350091】2.2.1 平方差公式
- 【350090】2.1.4 第2课时 多项式与多项式相乘
- 【350089】2.1.4 第1课时 单项式与多项式相乘