当前位置:首页 > 七年级 > 数学试卷

【333809】第一章单元检测卷

时间:2025-02-11 19:40:21 作者: 字数:8261字
简介:

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 整式的乘除 单元测试题

 

选择题(共12小题每小题3分,共36

1.下列计算正确的是(  )

Aa2+a2=2a4 B2a2×a3=2a6 C3a﹣2a=1 D.(a23=a6

2.下列多项式,可以用乘法公式计算的个数有(  )

a﹣b)( <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> b﹣a

2m2n+3mn2)(2m2n﹣3mn2

x﹣y)(﹣x﹣y

(﹣a+bx)(a﹣bx

A1 B2 C3 D4

3x2+ax+121是一个完全平方式,则 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> a为(  )

A22 B.﹣22 C±22 D0

4.如果20n÷a=2 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 2n,那么a等于(  )

A10n B5n C4n D2n

5.在下列括号中应填入a4的是(  )

Aa12=(,)2 Ba12=(,)3 Ca12=(,)4 Da12=(,)6

6.计算:[23x <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 22﹣48x3+6x(﹣6x)等于(  )

A3x3﹣8x2 B.﹣3x3+8x2 C.﹣3x3+8x2﹣1 D.﹣3x3﹣8x2﹣1

7.已知x= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> y=1 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,则代数式(x2﹣y22x2+y22的值为(  )

A.﹣4 B4 C.﹣ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> D <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

8.设一个正方形的边长为1cm,若边长增加2cm,则新正方形的面积增加了(  )

A6cm2 B5cm2 C8cm2 D7cm2

9.若要得到(a﹣b2,则在a2+3ab+b2应加上(  )

A.﹣ab B.﹣3ab C.﹣5ab <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> D.﹣7 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ab

10.若二项式x2+4加上一个单项式后成为一个完全平方式,则这样的单项式共有(  )

A1 B2 C3 D5

11.代数式 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> + <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 相乘,其积是一个多项式,它的次数是(  )

A3 B5 C6 D2

12.如果a﹣b=2a﹣c= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,那么a2+b2+c2﹣ab﹣ac﹣bc等于(  )

A <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> B <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> C <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> D.不能确定

 

填空题(共4小题每小题3分,共12

1310﹣2×105=   ;(﹣2a3=   

14.下列计算正确的有   (填写序号)

①a5+a5=2a10

s33=s6

(﹣32(﹣34=(﹣36=﹣36

④x3+y3=x+y3

[m﹣n3]4[m﹣n2]6=0

15a2m•a3m÷A=a3m+1,则A=   

16 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> =   4101×0.2599=   

 

解答题(共7小题,共72

17(6)5x2x﹣2)(3 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> x+1)﹣2x+1)(x﹣5

18(6)先化简,再求值:x﹣21﹣ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> x)﹣ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> x2﹣ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ),其中x=2

19(24)计算或化简:

1)(﹣30++0.22009×+52010

22x+4)(x﹣4

3)(x+22x+1)(x﹣1

4)先化简,再求值(m﹣2n)(m+2n)﹣(﹣m+n2,其中m= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> n=﹣1

20(6)化简求值:[a+ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> b2a﹣ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> b2]2a﹣ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> b)( <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> b+2a)( <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> b2+4a2)(其中a=﹣1b=2

21(12)如图,分别求各个图形的体积.

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

22(8)公园长椅上坐着两位白发苍苍的老人,旁边站着两个青年,他们在交谈.老人说:“我俩的年龄的平方差是195…”,不等老人说完,青年人就说:“真巧,我俩年龄的平方差也是195”.这时,一对中年夫妇也凑过来说:“真是巧极了,我俩年龄的平方差也是195”.现在请你想一想,这三对人的年龄各是多少岁?如果你有兴趣,不妨把第四对人的年龄也找出来.

23(10)观察下列各式

x﹣1)(x+1=x2﹣1

x﹣1)(x2+x+1=x3﹣1

x﹣1)(x3+x2+x+1=x4﹣1

1)分解因式:x5﹣1=   

2)根据规律可得(x﹣1)(xn﹣1++x+1=   (其中n为正整数);

3)计算:(3﹣1)(350+349+348++32+3+1);

4)计算:(﹣21999+(﹣21998+(﹣21997++(﹣23+(﹣22+(﹣2+1

 


参考答案与试题解析

 

选择题(共12小题)

1

【解答】解:A、应为a2+a2=2a2,故本选项错误;

B、应 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>2a2×a3=2a5,故本选项错误;

C、应为3a﹣2a=a,故本选项错误;

D、(a23=a6,正确.

故选:D

 

2

【解答】解:①(a﹣b)(b﹣a=﹣a﹣b2=﹣a2+2ab﹣b2

2m2n+3mn2)(2m2n﹣3mn2=4m4n2﹣9m2n4

x﹣y)(﹣x﹣y=y2﹣x2

(﹣a+bx)(a﹣bx=﹣a﹣bx2=﹣a2+2abx+b2x2

则可以利用乘法公式的个数有4个.

故选:D

 

3

【解答】解:∵(x±112=x2±22x+121

x2+ax+121中,a=±22

故选:C

 

4

【解答】解:a=20n÷22n

=4n×5n÷4n

=5n

故选:B

 

5

【解答】解:Aa12=a62

Ba12=a43

Ca12=a34

Da12=a26

故选:B

 

6

【解答】解:[23x22﹣48x3+6x(﹣6x

=[18x4﹣48x3+6x(﹣6x

=﹣3x3+8x2﹣1

故选:C

 

7

【解答】解:(x2﹣y22x2+y22

=x2﹣y2+x2+y2)(x2﹣y2﹣x2﹣y2),

=2x2(﹣2y2),

=﹣4xy2

x= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> y=1 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 时,原式=﹣4 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> × <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 2=﹣4

故选:A

 

8

【解答】解:根据题意得:(1+22﹣12=9﹣1=8,即新正方形的面积增加了8cm2

故选 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>C

 

9

【解答】解:由公式得,(a﹣b2=a2﹣2ab+b2

a2+3ab+b2比较可得,应加上﹣5ab

故选:C

 

10

【解答】解:可添加±4x,﹣4,﹣x2 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>5个.

故选:D

 

11

【解答】解:∵(a2b2)(a+b)(1+ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> + <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> =a3b2+ab2+a3+a2b+a2b3+b3

根据结果可知,它的次数是5

故选:B

 

12

【解答】解:a2+b2+c2﹣ab﹣ac﹣bc

= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 2a2+2b2+2c2﹣2ab﹣2ac﹣2bc),

= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> [a2+b2﹣2ab+a2+c2﹣2ac+b2+c2﹣2bc]

= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> [a﹣b2+a﹣c2+b﹣c2]

∵a﹣b=2a﹣c= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

∴b﹣c=﹣ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

原式= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 4+ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> + <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

故选:A

 

填空题(共4小题)

13

【解答】解:10﹣2×105=10﹣2+5=103

(﹣2a3=﹣8a3

故答案为:103、﹣8a3

 

14

【解答】解:∵a5+a5=2a5,∴①错误;

a33=a9,∴②错误;

(﹣32×(﹣34=(﹣36﹣36,∴③错误;

x+y3=x3+3x2y+3xy2+y3,∴④错误;

[m﹣n3]4[m﹣n2]6=m﹣n12m﹣n12=0,∴⑤正确;

即正确的有⑤,

故答案为:⑤.

 

15

【解答】解:由题意得,A=a2m•a3m÷a3m+1=a5m÷a3m+1=a2m﹣1

故答案为:a2m﹣1

 

16

【解答】解: <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> +1= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

4101×0.2599 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> =42×499×0.2599=16×4×0.2599=16×1=16

 

解答题(共7小题)

17

【解答】解:原式=5x23x2﹣5x﹣2)﹣2x2﹣4x﹣5),

=5x2﹣3x2+5x+2﹣2x2+8x+10

=13x+12

 

18

【解答】解:原式=x﹣2+3x﹣ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> x+ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> x2= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> x2+ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> x﹣2

x=2时,原式= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> + <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ﹣2= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

 

19

【解答】解:(1)原式=1++0.22009×+52009×+5

=1+0.2×52009×5

=1+5

=6

2)原式=2x2﹣16

=2x2﹣32

3)原式=x2+4x+4﹣x2+1

=4x+5

4)原式=4m2﹣n2﹣m2﹣n2+2mn

=3m2﹣2n2+2mn

∵m= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> n=﹣1

原式=3m2﹣2n2+2mn

=3× <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>2 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 2×(﹣12+2× <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ×(﹣1

= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ﹣2﹣1

=﹣ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

 

20

【解答】解:[a+ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> b2a﹣ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> b2]2a﹣ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> b)( <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> b+2a)( <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> b2+4a2),

=2ab4a2 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> b2)(4a2+ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> b2),

=2ab16a4 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> b4),

a=﹣1b=2时,

原式=2×(﹣1×2×[16×(﹣12 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ×24]=﹣60

 

21

【解答】解:如图1,根据题意得:2x•x•3x﹣4=6x3﹣8x2

如图2,根据题意得:x•2x•3x+7+3x•x•3x+7=6x3+14x2+9x3+21x2=15x3+35x2

 

22

【解答】解: <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 设两人的年龄是xy

x2﹣y2=195

即(x+y)(x﹣y=195

195分解因数可知:1×19 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 5=195

那么 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

解得x=98y=97

两位老人年龄97岁,98岁;

∵5×39=195

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

解得x=22y=17

两位青年人的年龄是22岁,17岁;

∵65×3=195

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

解得,x=34y=31

中年夫妇的年龄是31岁,34岁;

∵15×13=195

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

解得x=14y=1

第四对人的年龄是1岁和14岁.

 

23

【解答】解:(1)分解因式:x5﹣1=x﹣1)(x4+x3+x2+x+1);


2)(x﹣1)(xn﹣1++x+1=xn﹣1


3)(3﹣1)(350+349+348++32+3+1=351﹣1


4)∵(﹣2﹣1[(﹣21999+(﹣21998+(﹣21997++(﹣23+(﹣22+(﹣2+1]

=(﹣22000﹣1

=22000﹣1

(﹣21999+(﹣21998+(﹣21997++(﹣23+(﹣22+(﹣2+1= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>