【333194】6.3 实数(2) 教案
6.3 实数
第二课时
【教学目标】
知识与技能:
掌握实数的相反数和绝对值;
掌握实数的运算律和运算性质.
过程与方法:
通过复习有理数的相反数、绝对值、运算律、运算性质,引出实数的相反数、绝对值、运算律、运算性质,并通过例题和练习题加以巩固,适当加深对它们的认识。
情感态度与价值观:
通过建立有理数的一些概念和运算在实数范围里也成立的意识,让学生了解在这种数的扩充中所体现的一致性,让学生充分感受数的不断发展。
教学重点:
会求实数的相反数和绝对值;
会进行实数的加减法运算;
会进行实数的近似计算。
教学难点:
认识和理解有理数的一些概念和运算在实数中仍适用的这种扩充。
【教学过程】
一、复习引入:有理数的一些概念和运算性质运算律:
1、相反数:有理数
的相反数是
。
2、绝对值:当
≥0时,
,当
≤0时,
。
3、运算律和运算性质:有理数之间可以进行加、减、乘、除(除数不为0)、乘方、非负数的开平方、任意数的开立方运算,有理数的运算中还有交换律、结合律、分配律。
二、实数的运算:
1.实数的相反数:数
的相反数是
。
2.一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0.
3、实数之间可以进行加、减、乘、除(除数不为0)、乘方、非负实数的开方运算,还有任意实数的开立方运算,在进行实数的运算中,交换律、结合律、分配律等运算性质也适用。
三、应用:
例1、(1)求
的绝对值和相反数;
(2)已知一个数的绝对值是
,求这个数。
解:(1)因为
,所以
,
(2)因为
,所以绝对值为
的数是
或
。
例2、计算下列各式的值:
(1)
;
(2)
。
分析:运用加法的结合律和分配律。
解:(1)
;
(2)
例3、计算:
(1)
(精确到
)
(2)
(结果保留3个有效数字)
解:(1)
;
(2)
。
四、随堂练习:
1、计算:
(1)
;
(2)
;
(3)
;
(4)
。
2、计算:
(1)
(精确到0.01);
(2)
(精确到十分位)。
3、在平面内有四个点,它们的坐标分别是
。
(1)依次连接
,围成的四边形是一个什么图形?
(2)求这个四边形的面积。
(3)将这个四边形向下平移
个单位长度,四个顶点的坐标变为多少?
五、课堂小结
1、实数的运算法则及运算律。
2、实数的相反数和绝对值的意义
六、布置作业
课本P57习题6.3第4、5、6、7题;
教学反思:
- 1【354787】初一期末试卷一
- 2【354786】初一期末试卷五
- 3【354785】初一期末试卷四
- 4【354784】初一期末试卷三
- 5【354783】初一期末试卷二
- 6【350123】第6章 知识点梳理
- 7【350122】第5章 知识点梳理
- 8【350121】第4章 知识点梳理
- 9【350120】第3章 知识点梳理
- 10【350119】第2章 知识点梳理
- 11【350118】第1章 知识点梳理
- 12【350117】6.2 方差
- 13【350116】6.1.3 众数
- 14【350115】6.1.2 中位数
- 15【350114】6.1.1 第2课时 加权平均数
- 16【350112】5.3 图形变换的简单应用
- 17【350113】6.1.1 第1课时 平均数
- 18【350111】5.2 旋转
- 19【350110】5.1.2 轴对称变换
- 20【350109】5.1.1 轴对称图形
- 【350108】4.6 两条平行线间的距离
- 【350107】4.5 第2课时 垂线段与点到直线的距离
- 【350106】4.5 第1课时 垂线
- 【350105】4.4 第2课时 平行线的判定方法2,3
- 【350104】4.4 第1课时 平行线的判定方法1
- 【350103】4.3 平行线的性质
- 【350102】4.2 平移
- 【350101】4.1.2 相交直线所成的角
- 【350100】4.1.1 相交与平行
- 【350099】3.3 第2课时 利用完全平方公式进行因式分解
- 【350098】3.3 第1课时 利用平方差公式进行因式分解
- 【350097】3.2 第2课时 提多项式公因式
- 【350096】3.2 第1课时 提单项式公因式
- 【350095】3.1 多项式的因式分解
- 【350094】2.2.3 运用乘法公式进行计算
- 【350093】2.2.2 第2课时 运用完全平方公式进行计算
- 【350092】2.2.2 第1课时 完全平方公式
- 【350091】2.2.1 平方差公式
- 【350090】2.1.4 第2课时 多项式与多项式相乘
- 【350089】2.1.4 第1课时 单项式与多项式相乘