【332966】4.1 第1课时 三角形的内角和1
1.如图,共有三角形的个数是( )
A.
3
B.4
C.5
D.6
2.如图所示,在ΔABC中,∠ACB是钝角,让点C在射线BD
上向右移动,则(
)
A.ΔACB将变为锐
角三角形,而不会
再是钝角三角形
B.Δ
ACB将先变为直角
三角形,然后再
变为锐角三角形,
而不
会再是钝角三角形
C.ΔACB将先变为直角三角形,然后变为锐角三角
形,接着又由锐角三角形变为钝角三角形D.ΔACB先由钝角三角形变为直角三角形,再变为锐角三角形,接着又变为直角三角形,然后再次变为钝角三角形
3.一个三角形的三个内角的度数之比为1∶2∶3,这个三角形一定是( )
A.直角三角形 B.锐角三角形
C.钝角三角形 D.无法判定
4.若直角三角形中的两个锐角之差为22°,则较小的一个锐角的度数是( )
A.24° B.34° C.44° D.46°
5.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是( )
A.120° B.90° C.60° D.30°
6.如图所示,ΔABC中,点D,E分别在AB,BC边上,DE∥AC,∠B=50°,
∠C=70°,那么∠1的度数是 ( )
A.70° B.60° C.50° D.40°
7.如图,三角形共有________个.
8.如图,AB∥CD,CE与AB交于点A,BE⊥CE,垂足为E.若∠C=37°,则∠B=
.
9.如图所示,在ΔABC中,∠ABC=∠ACB,∠A=50°,BD为∠ABC的平分线,则∠BD
C=
.
10.如图所示,在ΔABC中,∠ABC=∠ACB,CD平分∠ACB交AB于点
D,AE∥DC交BC的延长线于点E,已知∠E=36°,则∠B= 度.
11.已知,如图,D是△ABC中BC边延长线上一点,F为AB上一点,直线FD交AC于E,∠DFB=90°,∠A=46°,∠D=50°.求∠ACB的度数.
参考答案[来源:学_科_网]
1.D [来源:Z*xx*k.Com]2.D 3.A 4.B 5.D 6.B
7.13 8.53° 9.82.5° 10.72
11.解:在△DFB中,∵∠DFB=90°,∠D=50°,∠DFB+∠D+∠B=180°,∴∠B=40°.在△ABC中,∵∠A=46°,∠B=40°,∴∠ACB=180°-∠A-∠B=94°.
- 1【354787】初一期末试卷一
- 2【354786】初一期末试卷五
- 3【354785】初一期末试卷四
- 4【354784】初一期末试卷三
- 5【354783】初一期末试卷二
- 6【350123】第6章 知识点梳理
- 7【350122】第5章 知识点梳理
- 8【350121】第4章 知识点梳理
- 9【350120】第3章 知识点梳理
- 10【350119】第2章 知识点梳理
- 11【350118】第1章 知识点梳理
- 12【350117】6.2 方差
- 13【350116】6.1.3 众数
- 14【350115】6.1.2 中位数
- 15【350114】6.1.1 第2课时 加权平均数
- 16【350112】5.3 图形变换的简单应用
- 17【350113】6.1.1 第1课时 平均数
- 18【350111】5.2 旋转
- 19【350110】5.1.2 轴对称变换
- 20【350109】5.1.1 轴对称图形
- 【350108】4.6 两条平行线间的距离
- 【350107】4.5 第2课时 垂线段与点到直线的距离
- 【350106】4.5 第1课时 垂线
- 【350105】4.4 第2课时 平行线的判定方法2,3
- 【350104】4.4 第1课时 平行线的判定方法1
- 【350103】4.3 平行线的性质
- 【350102】4.2 平移
- 【350101】4.1.2 相交直线所成的角
- 【350100】4.1.1 相交与平行
- 【350099】3.3 第2课时 利用完全平方公式进行因式分解
- 【350098】3.3 第1课时 利用平方差公式进行因式分解
- 【350097】3.2 第2课时 提多项式公因式
- 【350096】3.2 第1课时 提单项式公因式
- 【350095】3.1 多项式的因式分解
- 【350094】2.2.3 运用乘法公式进行计算
- 【350093】2.2.2 第2课时 运用完全平方公式进行计算
- 【350092】2.2.2 第1课时 完全平方公式
- 【350091】2.2.1 平方差公式
- 【350090】2.1.4 第2课时 多项式与多项式相乘
- 【350089】2.1.4 第1课时 单项式与多项式相乘