【332726】1.6 第2课时 完全平方公式的运用1
1.已知x+y=-5,xy=6,则x2+y2的值是 ( )
A.1
B.13
C.17
D.25
2.已知:a-b=3,ab=1,则a2-3ab+b2=_____.
3.若a+b=4,则a2+2ab+b2的值为_____.
4.1022等于 ;
5.计算:982+(a-b)2
6.已知:x+y=6,xy=4.(1)求x2+y2的值;(2)求(x-y)2的值;(3)求x4+y4的值
7.若x2+y2=86,xy=-16,求(x-y)2.
8.知(m+n)2=10,(m-n)2=2,求 m4+n4 的值.
9.计算:
①29.8×30.2;
②46×512;
③2052.
答案:
1.B 2.8 3.16 4.10404
5.解:982+(a-b)2=(100-2)2+a2+2ab2+b2=10000-400+4+a2+2ab2+b2=9604+a2+2ab2+b2
6.解:∵x+y=6,xy=4,
∴(1)x2+y2=(x+y)2-2xy=62-2×4=28;
(2)(x-y)2=x2+y2-2xy=28-2×4=20;
(3)x4+y4=(x2+y2)2-2x2y2=(x2+y2)2-2(xy)2=202-2×42=368.
7.解:∵(x-y)2=x2+y2-2xy,且x2+y2=86,xy=-16,
∴(x-y)2=86-2×(-16)=118.
8.解:(m+n)2=10,(m-n)2=2,
∴m2+2mn+n2=10,m2-2mn+n2=2,
相减得:4mn=8,
∴2mn=4,
∴m4+n4
=(m2+n2)2-2(mn)2
=[(m+n)2-2mn]2-8
=[10-4]2-8
=36-8
=28.
9.解:①29.8×30.2=(30+0.2)(30-0.2)=302-0.22=900-0.04=899.96;
②46×512=212×512=(2×5)12=1012;
③2052=(200+5)2=40000+2000+25=42025.
- 1【354787】初一期末试卷一
- 2【354786】初一期末试卷五
- 3【354785】初一期末试卷四
- 4【354784】初一期末试卷三
- 5【354783】初一期末试卷二
- 6【350123】第6章 知识点梳理
- 7【350122】第5章 知识点梳理
- 8【350121】第4章 知识点梳理
- 9【350120】第3章 知识点梳理
- 10【350119】第2章 知识点梳理
- 11【350118】第1章 知识点梳理
- 12【350117】6.2 方差
- 13【350116】6.1.3 众数
- 14【350115】6.1.2 中位数
- 15【350114】6.1.1 第2课时 加权平均数
- 16【350112】5.3 图形变换的简单应用
- 17【350113】6.1.1 第1课时 平均数
- 18【350111】5.2 旋转
- 19【350110】5.1.2 轴对称变换
- 20【350109】5.1.1 轴对称图形
- 【350108】4.6 两条平行线间的距离
- 【350107】4.5 第2课时 垂线段与点到直线的距离
- 【350106】4.5 第1课时 垂线
- 【350105】4.4 第2课时 平行线的判定方法2,3
- 【350104】4.4 第1课时 平行线的判定方法1
- 【350103】4.3 平行线的性质
- 【350102】4.2 平移
- 【350101】4.1.2 相交直线所成的角
- 【350100】4.1.1 相交与平行
- 【350099】3.3 第2课时 利用完全平方公式进行因式分解
- 【350098】3.3 第1课时 利用平方差公式进行因式分解
- 【350097】3.2 第2课时 提多项式公因式
- 【350096】3.2 第1课时 提单项式公因式
- 【350095】3.1 多项式的因式分解
- 【350094】2.2.3 运用乘法公式进行计算
- 【350093】2.2.2 第2课时 运用完全平方公式进行计算
- 【350092】2.2.2 第1课时 完全平方公式
- 【350091】2.2.1 平方差公式
- 【350090】2.1.4 第2课时 多项式与多项式相乘
- 【350089】2.1.4 第1课时 单项式与多项式相乘