【333269】9.3 一元一次不等式组(2) 教案
9.3一元一次不等式组(二)
教学目标1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;
2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力;
3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。
教学重点:建立不等式组解实际问题的数学模型。
教学难点:正确分析实际问题中的不等关系,列出不等式组。
教学过程(师生活动)
一、复习归纳
在习题9.3第1题中,我们知道以下不等式组与解集的对应关系
做出答案,请问你从中发现了什么?
如果a、b都是常数,且a<b,你能不画数轴(但头脑中可以想数轴)很快地写出它们的解集吗?
老师推荐一个口诀帮助大家记忆:
小小取小;大大取大;大小小大取中间;大大小小取无聊。
探究实际问题出示教科书第139页例2(略)
问:(1)你是怎样理解“不能完成任务”的数量含义的?
(2)你是怎样理解“提前完成任务”的数量含义的?
(3)解决这个问题,你打算怎样设未知数?列出怎样的不等式?
师生一起讨论解决例2.
归纳小结1、教科书129页“归纳”
2、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗?
在讨论或议论的基础上老师揭示:
步法一致(设、列、解、答);本质有区别.(见下表)
一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表
设列解(结果)答
一元一次不等式组一个未知数找不等关系一个范围根据题意写出答案
二元一次不等式组两个未知数找等量关系一对数
教师揭示:列不等式解应用题时,(1)不等号方向要符合实际的数量关系,不能颠倒;(2)未知数所代表的量要确切,不能含含糊糊.
练习:教科书129页练习第2题。
某校在一次参观活动中,把学生编为8个组,若每组比预定人数多1人,则参观人数超过200人,若每组比预定人数少2人,则参观人数不大于184人,试求预定每组学生的人数.
教师巡视、指导、调控。
布置作业:教科书130页习题9.3 第4、5、6题.
- 1【354787】初一期末试卷一
- 2【354786】初一期末试卷五
- 3【354785】初一期末试卷四
- 4【354784】初一期末试卷三
- 5【354783】初一期末试卷二
- 6【350123】第6章 知识点梳理
- 7【350122】第5章 知识点梳理
- 8【350121】第4章 知识点梳理
- 9【350120】第3章 知识点梳理
- 10【350119】第2章 知识点梳理
- 11【350118】第1章 知识点梳理
- 12【350117】6.2 方差
- 13【350116】6.1.3 众数
- 14【350115】6.1.2 中位数
- 15【350114】6.1.1 第2课时 加权平均数
- 16【350112】5.3 图形变换的简单应用
- 17【350113】6.1.1 第1课时 平均数
- 18【350111】5.2 旋转
- 19【350110】5.1.2 轴对称变换
- 20【350109】5.1.1 轴对称图形
- 【350108】4.6 两条平行线间的距离
- 【350107】4.5 第2课时 垂线段与点到直线的距离
- 【350106】4.5 第1课时 垂线
- 【350105】4.4 第2课时 平行线的判定方法2,3
- 【350104】4.4 第1课时 平行线的判定方法1
- 【350103】4.3 平行线的性质
- 【350102】4.2 平移
- 【350101】4.1.2 相交直线所成的角
- 【350100】4.1.1 相交与平行
- 【350099】3.3 第2课时 利用完全平方公式进行因式分解
- 【350098】3.3 第1课时 利用平方差公式进行因式分解
- 【350097】3.2 第2课时 提多项式公因式
- 【350096】3.2 第1课时 提单项式公因式
- 【350095】3.1 多项式的因式分解
- 【350094】2.2.3 运用乘法公式进行计算
- 【350093】2.2.2 第2课时 运用完全平方公式进行计算
- 【350092】2.2.2 第1课时 完全平方公式
- 【350091】2.2.1 平方差公式
- 【350090】2.1.4 第2课时 多项式与多项式相乘
- 【350089】2.1.4 第1课时 单项式与多项式相乘