【332278】1.4 图形的位似(1)
§1.4图形的位似(1)
一、学习目标:
1、知道位似图形及其有关概念,知道位似图形上任意一对对应点到位似中心的距离之比等于位似比
2、利用图形的位似解决一些简单的实际问题,并在有关的学习和运用过程中发展自己的数学应用意识和动手操作能力
二、学习重点、难点:
重点:利用位似图形的定义能判断两个图形是否是位似图形及位似图形的性质的运用
难点:判断位似图形
三、学习过程:
1、在我们生活中经常见到很多这样一类相似的图形。比如:相底上的景与其洗出相片上的景、放映机通过光把幻灯片上的图放大到屏幕上等等。不管是放大的还是缩小的都没有改变图形形状,与原图形是相似的。
2、请观察下列图形,并归纳有什么特征。
3、位似图形:如果两个多边形不仅 ,而且对应顶点的连线 ,对应边 ,像这样的两个图形叫做位似图形,这个点叫做 。
4、位似图的性质:
(1)对应线段______ 。
(2)任意一对对应点和位似中心在___________,它们到位似中心的距离之比等于_____________.
5、利用位似将图形放大或缩小
例如 以O为位似中心,把△ABC放大2倍
以O为位似中心,把△ABC缩小到原来的1/2。
6、练习
1、如图D、E分别是AB、AC上的点
(1)如果DE∥BC,那么△ADE和△ABC是位似图形吗?为什么?
(
2)如果△ADE和△ABC是位似图形,那么DE∥BC吗?为什么?
2、下列说法中正确的是( )
A.位似图形可以通过平移而相互得到
位似图形的对应边平行且相等
位似图形的位似中心不只有一个
D.位似中心到对应点的距离之比都相等
3、下列图形中位似中心在图形上的是( )
如
图,正五边形
是由正五边形
经过位似变换得到的,若
,则下列结论正确的是( )
E
如图,五边形
与五边形
是位似图形,点
为位似中心,
,则
:
=___________.
如图,
与
是位似图形,且位似比是
,若AB=2cm,则
cm,
并
在图中画出位似中心O.
学后感:
- 1【354787】初一期末试卷一
- 2【354786】初一期末试卷五
- 3【354785】初一期末试卷四
- 4【354784】初一期末试卷三
- 5【354783】初一期末试卷二
- 6【350123】第6章 知识点梳理
- 7【350122】第5章 知识点梳理
- 8【350121】第4章 知识点梳理
- 9【350120】第3章 知识点梳理
- 10【350119】第2章 知识点梳理
- 11【350118】第1章 知识点梳理
- 12【350117】6.2 方差
- 13【350116】6.1.3 众数
- 14【350115】6.1.2 中位数
- 15【350114】6.1.1 第2课时 加权平均数
- 16【350112】5.3 图形变换的简单应用
- 17【350113】6.1.1 第1课时 平均数
- 18【350111】5.2 旋转
- 19【350110】5.1.2 轴对称变换
- 20【350109】5.1.1 轴对称图形
- 【350108】4.6 两条平行线间的距离
- 【350107】4.5 第2课时 垂线段与点到直线的距离
- 【350106】4.5 第1课时 垂线
- 【350105】4.4 第2课时 平行线的判定方法2,3
- 【350104】4.4 第1课时 平行线的判定方法1
- 【350103】4.3 平行线的性质
- 【350102】4.2 平移
- 【350101】4.1.2 相交直线所成的角
- 【350100】4.1.1 相交与平行
- 【350099】3.3 第2课时 利用完全平方公式进行因式分解
- 【350098】3.3 第1课时 利用平方差公式进行因式分解
- 【350097】3.2 第2课时 提多项式公因式
- 【350096】3.2 第1课时 提单项式公因式
- 【350095】3.1 多项式的因式分解
- 【350094】2.2.3 运用乘法公式进行计算
- 【350093】2.2.2 第2课时 运用完全平方公式进行计算
- 【350092】2.2.2 第1课时 完全平方公式
- 【350091】2.2.1 平方差公式
- 【350090】2.1.4 第2课时 多项式与多项式相乘
- 【350089】2.1.4 第1课时 单项式与多项式相乘