【332221】1.1 二次函数
第1章 二次函数
1.1 二次函数
1.若y=(m+1)
是二次函数,则m的值为 _________ .
2.已知y=(a+1)x2+ax是二次函数,那么a的取值范围是 _________ .
3.已知方程ax2+bx+cy=0(a≠0、b、c为常数),请你通过变形把它写成你所熟悉的一个函数表达式的形式.则函数表达式为 _________ ,成立的条件是 _________ ,是 _________ 函数.
4.已知y=(a+2)x2+x﹣3是关于x的二次函数,则常数a应满足的条件是 _________ .
5.二次函数y=3x2+5的二次项系数是 _________ ,一次项系数是 _________ .
已知y=(k+2)
是二次函数,则k的值为 _________ .
7.已知函数y=(m2﹣m)x2+mx﹣2(m为常数),根据下列条件求m的值:
(1)y是x的一次函数;
(2)y是x的二次函数.
8.已知函数y=(m﹣1)
+5x﹣3是二次函数,求m的值.
9.已知函数y=﹣(m+2)xm2﹣2(m为常数),求当m为何值时:
(1)y是x的一次函数?
(2)y是x的二次函数?并求出此时纵坐标为﹣8的点的坐标.
10.函数y=(kx﹣1)(x﹣3),当k为何值时,y是x的一次函数?当k为何值时,y是x的二次函数?
11.已知函数y=m•
,m2+m是不大于2的正整数,m取何值时,它的图象开口向上?当x取何值时,y随x的增大而增大?当x取何值时,y随x的增大而减少?当x取何值时,函数有最小值?
12.己知y=(m+1)
+m是关于x的二次函数,且当x>0时,y随x的增大而减小.求:
(1)m的值.
(2)求函数的最值.
13.已知
是x的二次函数,求出它的解析式.
14.如果函数y=(m﹣3)
+mx+1是二次函数,求m的值.
- 1【354787】初一期末试卷一
- 2【354786】初一期末试卷五
- 3【354785】初一期末试卷四
- 4【354784】初一期末试卷三
- 5【354783】初一期末试卷二
- 6【350123】第6章 知识点梳理
- 7【350122】第5章 知识点梳理
- 8【350121】第4章 知识点梳理
- 9【350120】第3章 知识点梳理
- 10【350119】第2章 知识点梳理
- 11【350118】第1章 知识点梳理
- 12【350117】6.2 方差
- 13【350116】6.1.3 众数
- 14【350115】6.1.2 中位数
- 15【350114】6.1.1 第2课时 加权平均数
- 16【350112】5.3 图形变换的简单应用
- 17【350113】6.1.1 第1课时 平均数
- 18【350111】5.2 旋转
- 19【350110】5.1.2 轴对称变换
- 20【350109】5.1.1 轴对称图形
- 【350108】4.6 两条平行线间的距离
- 【350107】4.5 第2课时 垂线段与点到直线的距离
- 【350106】4.5 第1课时 垂线
- 【350105】4.4 第2课时 平行线的判定方法2,3
- 【350104】4.4 第1课时 平行线的判定方法1
- 【350103】4.3 平行线的性质
- 【350102】4.2 平移
- 【350101】4.1.2 相交直线所成的角
- 【350100】4.1.1 相交与平行
- 【350099】3.3 第2课时 利用完全平方公式进行因式分解
- 【350098】3.3 第1课时 利用平方差公式进行因式分解
- 【350097】3.2 第2课时 提多项式公因式
- 【350096】3.2 第1课时 提单项式公因式
- 【350095】3.1 多项式的因式分解
- 【350094】2.2.3 运用乘法公式进行计算
- 【350093】2.2.2 第2课时 运用完全平方公式进行计算
- 【350092】2.2.2 第1课时 完全平方公式
- 【350091】2.2.1 平方差公式
- 【350090】2.1.4 第2课时 多项式与多项式相乘
- 【350089】2.1.4 第1课时 单项式与多项式相乘