当前位置:首页 > 八年级 > 数学试卷

【329666】4.2不等式的基本性质

时间:2025-02-03 19:02:29 作者: 字数:8447字
简介:



4.2不等式的基本性质同步测试

一、选择题

1.ba0,则下列式子正确的是(   )

A.  <a href="/tags/165/" title="等式" class="c1" target="_blank">等式</a> <a href="/tags/253/" title="基本" class="c1" target="_blank">基本</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/844/" title="不等式" class="c1" target="_blank">不等式</a>                          B.  <a href="/tags/165/" title="等式" class="c1" target="_blank">等式</a> <a href="/tags/253/" title="基本" class="c1" target="_blank">基本</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/844/" title="不等式" class="c1" target="_blank">不等式</a>                           

C.  <a href="/tags/165/" title="等式" class="c1" target="_blank">等式</a> <a href="/tags/253/" title="基本" class="c1" target="_blank">基本</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/844/" title="不等式" class="c1" target="_blank">不等式</a>                          D. ﹣b>﹣a

2.如果a+b0ab0,那么(  )

A. a0b0                   B. a0b0                   

C. a0b0                   D. a0b0

3.四个小朋友玩跷跷板,他们的体重分别为PQRS,如图所示,则他们的体重大小关系是(  )
 <a href="/tags/165/" title="等式" class="c1" target="_blank">等式</a> <a href="/tags/253/" title="基本" class="c1" target="_blank">基本</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/844/" title="不等式" class="c1" target="_blank">不等式</a>

A. PRSQ                    B. QSPR                    

C. SPQR                    D. SPRQ

4.对于命题“ab是有理数,若ab,则a2b2,若结论保持不变,怎样改变条件,命题才是真命题,给出下列以下四种说法:①ab是有理数,若ab0,则a2b2;②ab是有理数,若ab,且ab0,则a2b2;③ab是有理数,若ab0,则a2b2;④ab是有理数,若abab0,则a2b2.其中,真命题的个数是(     )

A. 1个                         B. 2个                                       

C. 3个                         D. 4

5.xy,则下列式子中错误的是(  )

A. x+  <a href="/tags/165/" title="等式" class="c1" target="_blank">等式</a> <a href="/tags/253/" title="基本" class="c1" target="_blank">基本</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/844/" title="不等式" class="c1" target="_blank">不等式</a> y+ <a href="/tags/165/" title="等式" class="c1" target="_blank">等式</a> <a href="/tags/253/" title="基本" class="c1" target="_blank">基本</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/844/" title="不等式" class="c1" target="_blank">不等式</a>                  B. ﹣3y﹣3                        

C.  <a href="/tags/165/" title="等式" class="c1" target="_blank">等式</a> <a href="/tags/253/" title="基本" class="c1" target="_blank">基本</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/844/" title="不等式" class="c1" target="_blank">不等式</a>  <a href="/tags/165/" title="等式" class="c1" target="_blank">等式</a> <a href="/tags/253/" title="基本" class="c1" target="_blank">基本</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/844/" title="不等式" class="c1" target="_blank">不等式</a>                       D. ﹣3x>﹣3y

6.已知ab,则下列不等式一定成立的是(  )

A. a+5b+5                  B. ﹣2a<﹣2b                        

C.  <a href="/tags/165/" title="等式" class="c1" target="_blank">等式</a> <a href="/tags/253/" title="基本" class="c1" target="_blank">基本</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/844/" title="不等式" class="c1" target="_blank">不等式</a> a> <a href="/tags/165/" title="等式" class="c1" target="_blank">等式</a> <a href="/tags/253/" title="基本" class="c1" target="_blank">基本</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/844/" title="不等式" class="c1" target="_blank">不等式</a> b                   D. 7a﹣7b0

7.如果ab,那么不等式变形正确的是(  )

A. a﹣2b﹣2                       B. 0.5a0.5b                       

C. ﹣2a<﹣2b                       D. ﹣a>﹣b

8.已知实数ab,若ab,则下列结论正确的是(   )

A. a﹣5b﹣5                     B. 2+a2+b                           

C.  <a href="/tags/165/" title="等式" class="c1" target="_blank">等式</a> <a href="/tags/253/" title="基本" class="c1" target="_blank">基本</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/844/" title="不等式" class="c1" target="_blank">不等式</a>                           D. 3a3b

9.已知ab,则下列各式的判断中一定正确的是(  )

A. 3a3b                        B. 3﹣a3﹣b                       

C. ﹣3a>﹣3b                    D. 3÷a3÷b


10.如果 <a href="/tags/165/" title="等式" class="c1" target="_blank">等式</a> <a href="/tags/253/" title="基本" class="c1" target="_blank">基本</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/844/" title="不等式" class="c1" target="_blank">不等式</a> ,则下列不等式中一定能成立的是______

A.  <a href="/tags/165/" title="等式" class="c1" target="_blank">等式</a> <a href="/tags/253/" title="基本" class="c1" target="_blank">基本</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/844/" title="不等式" class="c1" target="_blank">不等式</a>                      B.  <a href="/tags/165/" title="等式" class="c1" target="_blank">等式</a> <a href="/tags/253/" title="基本" class="c1" target="_blank">基本</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/844/" title="不等式" class="c1" target="_blank">不等式</a>                           

C.  <a href="/tags/165/" title="等式" class="c1" target="_blank">等式</a> <a href="/tags/253/" title="基本" class="c1" target="_blank">基本</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/844/" title="不等式" class="c1" target="_blank">不等式</a>                   D.  <a href="/tags/165/" title="等式" class="c1" target="_blank">等式</a> <a href="/tags/253/" title="基本" class="c1" target="_blank">基本</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/844/" title="不等式" class="c1" target="_blank">不等式</a>

二、填空题

11.如果2x﹣52y﹣5,那么﹣x________﹣y(填“<、>、或=”

12.2x3y,则﹣2x  ________﹣3y

13.式子a2xxa2+1)成立,则x满足的条件是 ________

14.若关于x的不等式(1﹣ax2可化为x  <a href="/tags/165/" title="等式" class="c1" target="_blank">等式</a> <a href="/tags/253/" title="基本" class="c1" target="_blank">基本</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/844/" title="不等式" class="c1" target="_blank">不等式</a> ,则a的取值范围是________

15.已知xy,试比较大小:﹣2x________﹣2y

16.abc0,用“>”或“<”号填空:ac________bc

17.xy且(3﹣ax<(3﹣ay,则a的取值范围是 ________

18.ab,且c为有理数,则ac2________ bc2

三、解答题

19.证明:若ab0,则anbnn∈Nn≥1).










20.能不能找到这样的a值,使关于x的不等式(1﹣axa﹣5的解集是x2











21.把下列不等式化成xaxa的形式.
12x+53
2)﹣6x﹣1)<0










22.ab,讨论acbc的大小关系.

















23.已知实数abc满足不等式|a|≥|b+c||b|≥|c+a||c|≥|a+b|,求证:a+b+c=0


参考答案

一、选择题

1.C 2.A 3.D 4.D 5.D 6.D 7.C 8.D 9.A 10.C

二、填空题

11.12.13.x0 14.a1 15.16.17.a3 18.  

三、解答题

19.证明:∵ab0n≥1
∴anbn

20.解:∵关于x的不等式(1﹣axa﹣5的解集是x2
∴1﹣a0 <a href="/tags/165/" title="等式" class="c1" target="_blank">等式</a> <a href="/tags/253/" title="基本" class="c1" target="_blank">基本</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/844/" title="不等式" class="c1" target="_blank">不等式</a> =2
解得:a= <a href="/tags/165/" title="等式" class="c1" target="_blank">等式</a> <a href="/tags/253/" title="基本" class="c1" target="_blank">基本</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/844/" title="不等式" class="c1" target="_blank">不等式</a>
经检验a= <a href="/tags/165/" title="等式" class="c1" target="_blank">等式</a> <a href="/tags/253/" title="基本" class="c1" target="_blank">基本</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/844/" title="不等式" class="c1" target="_blank">不等式</a> 是方程 <a href="/tags/165/" title="等式" class="c1" target="_blank">等式</a> <a href="/tags/253/" title="基本" class="c1" target="_blank">基本</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/844/" title="不等式" class="c1" target="_blank">不等式</a> =2的解,
即能找到这样的a值,使关于x的不等式(1﹣axa﹣5的解集是x2

21.解:(1)移项,得
2x3﹣5
合并同类项,得
2x>﹣2
系数化为1,得
x>﹣1
2)去括号,得,
﹣6x+60
移项,得
﹣6x<﹣6
系数化为1,得
x1

22.解:ab
c0时,acbc
c=0时,ac=bc
c0时,acbc

23.证明:∵|a|≥|b+c||b|≥|c+a||c|≥|a+b|
∴a2b+c2 b2c+a2 c2a+b2
∴a2+b2+c2b+c2+c+a2+a+b2=2a2+b2+c2+2ab+2bc+2ca
∴a2+b2+c2+2ab+2bc+2ca≤0
a+b+c2≤0,而(a+b+c2≥0
∴a+b+c=0