【329639】3.3 轴对称与坐标变化同步测试(1)
3 轴对称与坐标变化
一、目标导航
知识目标:经历图形坐标变化与图形的平移,轴对称,伸长,压缩之间的关系的探索过程;在同一直角坐标系中,感受图形上点的坐标变化与图形的变化(平移,轴对称,伸长,压缩)之间的关系.
能力目标:经历探究物体与图形的形状、大小、位置关系和变换的过程;掌握空间与图形的基础知识和基本技能;通过图形的平移,轴对称等,培养学生的探索能力.
二、基础过关
2.点P(0,-3)在轴上;在x轴上的点,坐标必为0;
3.若点P(a,b)在第四象限,则点M(-a,-b)在第象限,点N(-a,b)在第象限;
4.点A在第三象限,且点A到x轴的距离为3,到y轴的距离为2,则A点坐标为.
5.将点P(2,4)向右平移3个单位,得到的点的坐标是( , )
将点P(2,4)向左平移3个单位,得到的点的坐标是( , )
将点P(2,4)向上平移3个单位,得到的点的坐标是( , )
将点P(2,4)向下平移3个单位,得到的点的坐标是( , )
根据上题总结,填空:
(1)横坐标加一个正数(纵坐标不变),点向平移;横坐标减一个正数(纵坐标不变),点向平移.
(2)纵坐标加一个正数(横坐标不变),点向平移;纵坐标减一个正数(横坐标不变),点向平移.
6.(1)在下面的平面直角坐标系中,依次描出下列各点:(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0).再用线段顺次连结各点,得到一个图形象.
(2)上述各点的纵坐标不变,将横坐标分别加5得到各个点的坐标分别是:
,描出这几个点,再用线段顺次连接起来,这样得到的图形与原来的图形有什么变化?先猜一猜,再动手画.
答:____________________________.
(3)若(1)中的各点的横坐标不变,纵坐标分别加3得到各个点的坐标分别是: _ ,描出这几个点,再用线段顺次连接起来(仍在下图画),这样得到的图形与原来的图形有什么变化?先猜一猜,再动手画.
答:____________________________.
(4)根据第(1)、(2)、(3),大胆猜想:
①若将一个图形各点的横坐标都加上3个单位(纵坐标不变),则图形会向平移单位.
②若将一个图形各点的横坐标都减去5个单位(纵坐标不变),则图形会向平移单位.
③若将一个图形各点的纵坐标都加上2个单位(横坐标不变),则图形会向平移单位.
④若将一个图形各点的纵坐标都减去6个单位(横坐标不变),则图形会向平移单位.
三、能力提升
7.(1)在下边的平面直角坐标系中,依次描出下列各点:(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0).再用线段顺次连结各点,得到一个图形象______.
(2)上述各点的纵坐标不变,横坐标分别变为原来的2倍,得到各个点的坐标分别是:,描出这几个点,再用线段顺次连接起来,这样得到的图形与原来的图形有什么变化?先猜一猜,再动手画.
答:____________________________.
(3)若(1)中的各点的纵坐标不变,横坐标分别变为原来的
,得到各个点的坐标分别是:,描出这几个点,再用线段顺次连接起来(仍在下图画),这样得到的图形与原来的图形有什么变化?先猜一猜,再动手画.
答:____________________________.
(4)根据第(1)、(2)、(3),大胆猜想:
①若一个图形各点的横坐标不变,纵坐标变为原来的3倍,则图形的形状会发生什么变化?答:_________________.
②若一个图形各点的横坐标不变,纵坐标变为原来的
倍,则图形的形状会发生什么变化?答:_________________.
③若一个图形各点的纵坐标不变,横坐标变为原来的4倍,则图形的形状会发生什么变化?答:_________________.
④若一个图形各点的纵坐标不变,横坐标变为原来的
倍,则图形的形状会发生什么变化?答:_________________.
8.将点P(2,4)向左平移3个单位,再向下平移6个单位,得到的点的坐标是.
9.将点P(
)向右平移2个单位,再向上平移3个单位,得到的点的坐标是(1,3),则点(
)在第象限.
10.建立适当的直角坐标系,表示边长为2的正六边形的各个顶点的坐标.
(1)作出这个正六边形关于x轴的对称图形,并写出各顶点的坐标.
(2)作出这个正六边形关于y轴的对称图形,并写出各顶点的坐标.
(3)作出这个正六边形关于原点的对称图形,并写出各顶点的坐标.
(4)把这个正六边形整体向上移动3个单位长度,写出六个顶点的坐标;整体向下移动3个单位长度,写出六个顶点的坐标.
(5)把这个正六边形整体向左移动3个单位长度,并写出六个顶点的坐标;整体向右移动3个单位长度,并写出六个顶点的坐标.
四、聚沙成塔
如图所示,在直角坐标系中,第一次△OAB将变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3.A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0), B3(16,0).
(1)观察每次变换后三角形的变化,找出规律,按此规律再将△OA3B3变换成△OA4B4,则A4坐标为,B4的坐标为.
(2)若按(1)中找到的规律,将△OAB进行了n次变换,得到△OAnBn,比较每次变换后三角形的顶点坐标有何变化,按其规律推测An的坐标为, Bn的坐标为.
参考答案
四
y;纵
二;三
(-2,-3)
5.5,4;-1,4;2,7;2,1;(1)右;左;(2)上;下
6.鱼;(5,0),(10,4),(8,0),(10,1),(10,-1),(8,0),(9,-2),(5,0);向右平移5个单位;(0,3)(5,7)(3,3)(5,4)(5,2)(3,3)(4,1)(0,3);向上平移3个单位;右,3;左,5;上,2;下,6
7.(1)鱼;(2)(0,0),(10,4),(6,0),(10,1),(10,-1),(6,0),(8,-2),(0,0);图形纵向不变,横向拉长为原来的2倍;(3)(0,0),(
,4),(
,0),((
,1),(
,-1),(
,0),(2,-2),(0,0);图形纵向不变,横向缩短为原来的
;(1)图形横向不变,纵向拉长为原来的3倍(2)图形横向不变,纵向缩短为原来的
(3)图形纵向不变,横向拉长为原来的4倍(4)图形纵向不变,横向缩短为原来的
8.(-1,-2)
9.三
10.略
聚沙成塔:A4(16,3),B4(32,0),An(
,3),Bn(
,0).
- 1【330924】综合平移的坐标表示
- 2【330923】专题练习2:用计算器求平均数
- 3【330921】轴对称的坐标表示
- 4【330922】专题练习1:用计算器求平均数
- 5【330920】中心对称和中心对称图形
- 6【330919】直角三角形全等的判定
- 7【330918】直角三角巷的性质和判定(Ⅰ)
- 8【330917】正方形
- 9【330916】正比例函数的图象和性质
- 10【330915】长丰县2018-2019学年度第二学期期末考试八年级数学参考答案
- 11【330914】用待定系数法确定一次函数表达式
- 12【330913】一次函数知识点总结
- 13【330911】一次函数与一次方程的联系
- 14【330912】一次函数知识点归纳
- 15【330908】新人教版初中数学八年级下册同步练习试题及答案_第20章 数据的分析(22页)
- 16【330910】一次函数的图象和性质
- 17【330909】一次函数
- 18【330907】新人教版八年级数学下第18章《平行四边形》单元试卷
- 19【330906】新人教版八年级数学下第16章《二次根式》单元试卷
- 20【330904】湘教版八年级数学下《第5章数据的频数分布》单元试卷含答案
- 【330905】湘教版八年级数学下册全册综合测试题
- 【330903】湘教版八年级数学下《第3章图形与坐标》单元试卷含答案
- 【330901】湘教版八年级数学下《第1章直角三角形》单元试卷含答案
- 【330902】湘教版八年级数学下《第2章四边形》单元试卷含答案
- 【330900】五种类型一次函数解析式的确定
- 【330899】同步练习试题及答案_第19章 一次函数(10页)
- 【330898】同步练习试题及答案_第18章 平行四行形(40页)
- 【330897】同步练习试题及答案_第17章 勾股定理(20页)
- 【330896】同步练习试题及答案_第16章 二次根式(19页)
- 【330894】思想方法专题:直角三角形中的思想方法
- 【330895】特殊平行四边形知识点归纳
- 【330893】思想方法专题:矩形中的折叠问题
- 【330892】思想方法专题:勾股定理中的思想方法
- 【330891】数学培优辅差工作计划3
- 【330890】数学培优辅差工作计划2
- 【330889】数学培优辅差工作计划1
- 【330888】三角形的中位线
- 【330887】人教版数学八年级上同期末达标检测卷2
- 【330886】人教版数学八年级上同期末达标检测卷1
- 【330885】人教版数学八年级上册期中达标测试卷