当前位置:首页 > 八年级 > 数学试卷

【329514】2.2.2 第1课时 平行四边形的判定定理1,2

时间:2025-01-21 13:15:31 作者: 字数:5411字
简介:

2.2.2 平行四边形的判定

1课时 平行四边形的判定定理1,2

要点感知1 一组对边平行且__________的四边形是平行四边形.

预习练习1-1 如果ABCDABEF有公共边AB,那么四边形DCEF__________.

要点感知2 两组对边分别相等的四边形是__________四边形.

预习练习2-1 如图,在四边形ABCD中,AB=CDBC=AD,若∠A=110°,则∠C=__________.

 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/912/" title="定理" class="c1" target="_blank">定理</a>


知识点1 一组对边平行且相等的四边形是平行四边形

1.如图,在四边形ABCD中,点EBC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是( )

A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDE

 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/912/" title="定理" class="c1" target="_blank">定理</a>  <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/912/" title="定理" class="c1" target="_blank">定理</a>  <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/912/" title="定理" class="c1" target="_blank">定理</a>

1题图 第2题图 第3题图

2.如图,ABCD中,点EF分别为边ABDC的中点,则图中共有平行四边形的个数是( )

A.3 B.4 C.5 D.6

3.如图,在四边形ABCD中,AB∥CD,要使得四边形ABCD是平行四边形,应添加的条件是__________(只填写一个条件,不使用图形以外的字母和线段).

4.如图,已知四边形ABCD中,AB=CD,∠BAC=∠DCA,求证:四边形ABCD是平行四边形.

 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/912/" title="定理" class="c1" target="_blank">定理</a>









5.已知:如图,在四边形ABCD中,AB∥CD,对角线ACBD相交于点OBO=DO.求证:四边形ABCD是平行四边形.

 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/912/" title="定理" class="c1" target="_blank">定理</a>






知识点2 两组对边分别相等的四边形是平行四边形

6.四边形ABCD中,AB=CDAD=BC,∠B=50°,则∠A=__________.

7.如图,以△ABC的顶点A为圆心,以BC长为半径作弧,再以顶点C为圆心,以AB长为半径作弧,两弧交于点D,连接ADCD.若∠B=65°,则∠ADC的大小为__________.

 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/912/" title="定理" class="c1" target="_blank">定理</a>

8.已知四边形ABCD的四条边长满足(AB-CD)2+(AD-BC)2=0,求证:AB∥CD.












9.ABCD在同一平面内,从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD这四个条件中任意选两个,能使四边形ABCD是平行四边形的有( )

A.3B.4C.5D.6

10.如图,ABCD中,∠ABC=60°,点EF分别在CDBC的延长线上,AE∥BDEF⊥BCEF= <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/912/" title="定理" class="c1" target="_blank">定理</a> ,则AB的长是__________.

 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/912/" title="定理" class="c1" target="_blank">定理</a>

11.如图,已知BE∥DF,∠ADF=∠CBEAF=CE.求证:四边形DEBF是平行四边形.


 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/912/" title="定理" class="c1" target="_blank">定理</a>






12.如图,在ABCD中,分别以ADBC为边向内作等边△ADE和等边△BCF,连接BEDF.求证:四边形BEDF是平行四边形.

 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/912/" title="定理" class="c1" target="_blank">定理</a>








13.如图,在平行四边形ABCD中,∠C=60°MN分别是ADBC的中点,BC=2CD.

(1)求证:四边形MNCD是平行四边形;

(2)求证:BD=3MN.


 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/912/" title="定理" class="c1" target="_blank">定理</a>









14.如图,在梯形ABCD中,AD∥BCAD6BC16,点EBC的中点.P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.P停止运动时,点Q也随之停止运动.求当运动时间t为多少秒时,以点PQED为顶点的四边形是平行四边形?

 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/912/" title="定理" class="c1" target="_blank">定理</a>
















参考答案

要点感知1 相等

预习练习1-1 平行四边形

要点感知2 平行

预习练习2-1 110°


1.D 2.B 3.答案不唯一,如ABCDBC∥AD

4.证明:∵∠BAC=∠DCA

∴AB∥CD.

又∵AB=CD

四边形ABCD是平行四边形.

5.证明:∵AB∥CD

∴∠ABO=∠CDO,∠BAO=∠DCO.

又∵BO=DO

∴△AOB≌△CODAAS.

∴AB=CD.

四边形ABCD是平行四边形.

6.130° 7.65°

8.证明:∵(AB-CD)2+(AD-BC)2=0

∴AB-CD=0AD-BC=0.

∴AB=CDAD=BC.

四边形ABCD是平行四边形.

∴AB∥CD.

9.B 10.1

11.证明:∵BE∥DF

∴∠AFD=∠CEB.

又∵∠ADF=∠CBEAF=CE

∴△ADF≌△CBE(AAS).

∴DF=BE.

又∵BE∥DF

四边形DEBF是平行四边形.

12.证明:∵四边形ABCD是平行四边形,

∴CD=ABAD=CB,∠DAB=∠BCD.

又∵△ADE和△CBF都是等边三角形,

∴DE=BFAE=CF,∠DAE=∠BCF=60°.

∴∠BCD-∠BCF=∠DAB-∠DAE,即∠DCF=∠BAE.

∴△DCF≌△BAE(SAS).

∴DF=BE.

四边形BEDF是平行四边形.

13.证明:(1)∵ABCD是平行四边形,

∴AD=BCAD∥BC.

∵MN分别是ADBC的中点,

∴MD=NCMD∥NC.

∴MNCD是平行四边形;

(2)连接ND

∵MNCD是平行四边形,

∴MN=DC.

∵NBC的中点,

∴BN=CN.

∵BC=2CD,∠C=60°

∴△NCD是等边三角形.

∴ND=NC,∠DNC=60°.

∵∠DNC是△BND的外角,

∴∠NBD+∠NDB=∠DNC.

∵DN=NC=NB

∴∠DBN=∠BDN= <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/912/" title="定理" class="c1" target="_blank">定理</a> ∠DNC=30°.

∴∠BDC=90°.

∴BC=2DCBD= <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/912/" title="定理" class="c1" target="_blank">定理</a> = <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/912/" title="定理" class="c1" target="_blank">定理</a> = <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/912/" title="定理" class="c1" target="_blank">定理</a> DC.

DC=MN,∴BD= <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/912/" title="定理" class="c1" target="_blank">定理</a> MN.

14.由题意可知,AP=tCQ=2tCE= <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/912/" title="定理" class="c1" target="_blank">定理</a> BC=8.

∵AD∥BC

PDEQ时,以点PQED为顶点的四边形是平行四边形.

2t8t4时,点QCE之间,如图甲.

 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/912/" title="定理" class="c1" target="_blank">定理</a>

此时,PDAD-AP6-tEQCE-CQ8-2t,由6-t8-2tt2.

8<2t<164<t<8时,点QBE之间,如图乙.

 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/912/" title="定理" class="c1" target="_blank">定理</a>

此时,PDAD-AP6-tEQCQ-CE2t-8,由6-t2t-8t <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/912/" title="定理" class="c1" target="_blank">定理</a> .

当运动时间为2 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/912/" title="定理" class="c1" target="_blank">定理</a> 时,以点PQED为顶点的四边形是平行四边形.