【329464】1.3 直角三角形全等的判定
1.3 直角三角形全等的判定
学习目标:1、掌握了直角三角形的全等判定定理.
2、利用斜边、直角边定理解决数学问题.
3、了解角平分线的性质及其简单应用
学习重点:直角三角形全等的判定定“HL”.
学习过程:
一、旧知回顾
1、全等三角形判定定理:
(1) 简写
(2) 简写
(3) 简写
(4) 简写
2、如图,CE⊥AB,DF⊥AB,垂足分别为E、F,
(
1)若AC//DB,且AC=DB,则△ACE≌△BDF,
根据
(2)若AC//DB,且AE=BF,则△ACE≌△BDF,
根据
(3)若AE=BF,且CE=DF,则△ACE≌△BDF,
根据
(4)若AC=BD,AE=BF,CE=DF.则△ACE≌△BDF,
根据
二、自主学习、合作交流
1、斜边、直角边定理
(简称 或 ).
2、定理的理解:如下图,CE⊥AB,DF⊥AB,垂足分别为E、F,
|
(1)、在Rt△ACE与Rt△BDF中: = AE=BF ∴Rt△ACE≌Rt△BDF(HL) (2)、在Rt△ACE与Rt△BDF中 = AC=BD ∴ Rt△ACE≌Rt△BDF(HL) |
4、三角形的三条角平分线的交点到 相等,
5、到一个角 的点,在 上.
三、知识运用
1、判断题:
(1)一个锐角和这个锐角的对边对应相等的两个直角三角形全等.( )
(2)一个锐角和锐角相邻的一直角边对应相等的两个直角三角形全等( )
(3)一个锐角与一斜边对应相等的两个直角三角形全等( )
(4)两直角边对应相等的两个直角三角形全等( )
(5)两边对应相等的两个直角三角形全等( )
(6)两锐角对应相等的两个直角三角形全等( )
(7)一个锐角与一边对应相等的两个直角三角形全等( )
2
.如图3-46,已知∠ACB=∠BDA=Rt∠,若要使△ACB
≌△BDA,还需要什么条件?
把它们分别写出来(有几种不同的方法就写几种).
理由:( ) ( ) ( ) ( )
3
、如图,B、E、F、C在同一直线上,AF⊥BC于F,DE⊥BC于E,AB=DC,BE=CF,你认为AB平行于CD吗?说说你的理由
答:
理由:∵ AF⊥BC,DE⊥BC (已知)
∴ ∠AFB=∠DEC= (垂直的定义)
又∵BE=CF
∴BE+ =CF+ 即: =
在 和 中
=
=
∴ ≌ ( )
∴∠ = ∠ ( )
∴ (内错角相等,两直线平行)
如图在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,且DE=DF,求证△ABC是等腰三角形.
四、课后反思:这节课你学到了什么?
- 1【330924】综合平移的坐标表示
- 2【330923】专题练习2:用计算器求平均数
- 3【330921】轴对称的坐标表示
- 4【330922】专题练习1:用计算器求平均数
- 5【330920】中心对称和中心对称图形
- 6【330919】直角三角形全等的判定
- 7【330918】直角三角巷的性质和判定(Ⅰ)
- 8【330917】正方形
- 9【330916】正比例函数的图象和性质
- 10【330915】长丰县2018-2019学年度第二学期期末考试八年级数学参考答案
- 11【330914】用待定系数法确定一次函数表达式
- 12【330913】一次函数知识点总结
- 13【330911】一次函数与一次方程的联系
- 14【330912】一次函数知识点归纳
- 15【330908】新人教版初中数学八年级下册同步练习试题及答案_第20章 数据的分析(22页)
- 16【330910】一次函数的图象和性质
- 17【330909】一次函数
- 18【330907】新人教版八年级数学下第18章《平行四边形》单元试卷
- 19【330906】新人教版八年级数学下第16章《二次根式》单元试卷
- 20【330904】湘教版八年级数学下《第5章数据的频数分布》单元试卷含答案
- 【330905】湘教版八年级数学下册全册综合测试题
- 【330903】湘教版八年级数学下《第3章图形与坐标》单元试卷含答案
- 【330901】湘教版八年级数学下《第1章直角三角形》单元试卷含答案
- 【330902】湘教版八年级数学下《第2章四边形》单元试卷含答案
- 【330900】五种类型一次函数解析式的确定
- 【330899】同步练习试题及答案_第19章 一次函数(10页)
- 【330898】同步练习试题及答案_第18章 平行四行形(40页)
- 【330897】同步练习试题及答案_第17章 勾股定理(20页)
- 【330896】同步练习试题及答案_第16章 二次根式(19页)
- 【330894】思想方法专题:直角三角形中的思想方法
- 【330895】特殊平行四边形知识点归纳
- 【330893】思想方法专题:矩形中的折叠问题
- 【330892】思想方法专题:勾股定理中的思想方法
- 【330891】数学培优辅差工作计划3
- 【330890】数学培优辅差工作计划2
- 【330889】数学培优辅差工作计划1
- 【330888】三角形的中位线
- 【330887】人教版数学八年级上同期末达标检测卷2
- 【330886】人教版数学八年级上同期末达标检测卷1
- 【330885】人教版数学八年级上册期中达标测试卷