【329466】1.3 直角三角形全等的判定2
1.3 直角三角形全等的判定
要点感知 斜边、直角边定理:斜边和__________条直角边对应相等的两个直角三角形全等.简称“斜边、直角边”或“HL”.
预习练习 如图,AB=CD,AE⊥BC于点E,DF⊥BC于点F,若BE=CF,则△ABE≌△__________,其依据是________.
知识点1 直角三角形全等的判定
1.如图,∠A=∠D=90°,AC=DB,则△ABC≌△DCB的依据是( )
A.HL B.ASA C.AAS D.SAS
第1题图 第3题图 第4题图
2.在下列条件中,不能判定两个直角三角形全等的是( )
A.两条直角边对应相等
B.两个锐角对应相等
C.一个锐角和它所对的直角边对应相等
D.一条斜边和一条直角边对应相等
3.如图所示,AB=CD,AE⊥BD于点E,CF⊥BD于点F,AE=CF,则图中全等的三角形有( )
A.1对 B.2对 C.3对 D.4对
4.已知:如图,AE⊥BC,DF⊥BC,垂足分别为E、F,AE=DF,AB=DC,则△ABE≌△__________.
5.如图,已知BD⊥AE于点B,C是BD上一点,且BC=BE,要使Rt△ABC≌Rt△DBE,应补充的条件是∠A=∠D或__________或__________或__________.
第5题图 第6题图 第7题图
6.已知:如图,BE、CD为△ABC的高,且BE=CD,BE、CD交于点P,若BD=2,则CE=__________.
7.已知:如图,AB=CD,DE⊥AC于点E,BF⊥AC于点F,且DE=BF,∠D=60°,则∠A=__________.
8.已知:如图,点B、F、C、E在同一直线上,BF=CE,AB⊥BE,DE⊥BE,垂足分别为B、E且AC=DF,连接AC、DF.求证:∠A=∠D.
9.已知:如图,AB=CD,DE⊥AC,BF⊥AC,E、F是垂足,DE=BF.求证:AB∥CD.
知识点2 作直角三角形
10.已知一条斜边和一条直角边,求作直角三角形,作图的依据是__________.
11.已知Rt△ABC,∠ACB=90°,请利用直角三角形全等的判定HL,求作三角形Rt△DEF,使Rt△DEF≌Rt△ABC.
12.用三角尺可按下面方法画角平分线:如图,在已知∠AOB两边上分别取OM=ON,再分别过点M、N作OA、OB的垂线,两垂线交于点P,画射线OP,则OP平分∠AOB.作图过程用到了△OPM≌△OPN,那么△OPM≌△OPN的依据是__________.
第12题图 第13题图 第14题图
13.如图,△ABC中,AD⊥BC于点D,要使△ABD≌△ACD,若根据“HL”判定,还需要加一个条件__________.
14.如图,在Rt△ABC的斜边BC上截取CD=CA,过点D作DE⊥BC交AB于点E,则有( )
A.DE=DB B.DE=AE C.AE=BE D.AE=BD
15.如图,AD∥BC,∠A=90°,E是AB上的一点,且AD=BE,∠1=∠2.
求证:△ADE≌△BEC.
16.如图,AD是△ABC的高,E为AC上一点,BE交AD于点F,若有BF=AC,FD=CD,试探究BE与AC的位置关系.
17.用尺规作一个直角三角形,使其中一条边长为a,这条边所对的角为30°.
18.已知:点O到△ABC的两边AB、AC所在直线的距离相等,且OB=OC.
(1)如图1,若点O在边BC上,求证:∠ABO=∠ACO;
(2)如图2,若点O在△ABC的内部,求证:∠ABO=∠ACO.
要点感知 一
预习练习 DCF HL
1.A 2.B 3.C 4.DCF 5.AB=DB AC=DE ∠ACB=∠DEB 6.2 7.30°
8.证明:∵BF=CE,
∴BF+FC=CE+FC.即BC=EF.
∵AB⊥BE,DE⊥BE,
∴∠B=∠E=90°.
在Rt△ABC与Rt△DEF中,∵AC=DF,BC=EF,
∴Rt△ABC≌Rt△DEF(HL).
∴∠A=∠D.
9.证明:∵DE⊥AC,BF⊥AC,
∴∠AFB=∠CED=90°.
在Rt△ABF和Rt△CDE中,AB=CD,DE=BF,
∴Rt△ABF≌Rt△CDE(HL).
∴∠ACD=∠CAB.
∴AB∥CD.
10.HL
11.作法:(1)作∠MFN=90°.
(2)在FM上截取FD,使FD=CA.
(3)以D为圆心,以AB为半径画弧,交FN于点E,连接DE.则△DEF为所求作的直角三角形.
12.HL 13.AB=AC 14.B
15.证明:∵∠1=∠2,∴DE=CE.
∵AD∥BC,∠A=90°,
∴∠B=90°.
∴△ADE和△EBC是直角三角形.
而AD=BE,DE=CE,
∴△ADE≌△BEC(HL).
16.BE与AC垂直.
理由:∵AD是△ABC的高,
∴∠BDF=∠ADC=90°.
∴在Rt△BDF和Rt△ADC中,BF=AC,FD=CD.
∴Rt△BDF≌△Rt△ADC(HL).
∴∠DBF=∠DAC.
∵∠ADC=90°,
∴∠DAC+∠ACD=90°.
∴∠DBF+∠ACD=90°.
∴∠BEC=90°.
∴BE⊥AC.
17.已知:线段a,
求作:Rt△ABC,使BC=a,∠ACB=90°,∠A=30°.
作法:(1)作∠MCN=90°.
(2)在CN上截取CB,使CB=a.
(3)以B为圆心,以2a为半径画弧,交CM于点A,连接AB.
则△ABC为所求作的直角三角形.
18.证明:(1)过点O分别作OE⊥AB,OF⊥AC,E、F分别是垂足,再利用“HL”证明Rt△OEB≌Rt△OFC.∴∠ABO=∠ACO.
(2)过点O分别作OE⊥AB,OF⊥AC,E、F分别是垂足,再利用“HL”证明Rt△OEB≌Rt△OFC.∴∠ABO=∠ACO.
- 1【330924】综合平移的坐标表示
- 2【330923】专题练习2:用计算器求平均数
- 3【330921】轴对称的坐标表示
- 4【330922】专题练习1:用计算器求平均数
- 5【330920】中心对称和中心对称图形
- 6【330919】直角三角形全等的判定
- 7【330918】直角三角巷的性质和判定(Ⅰ)
- 8【330917】正方形
- 9【330916】正比例函数的图象和性质
- 10【330915】长丰县2018-2019学年度第二学期期末考试八年级数学参考答案
- 11【330914】用待定系数法确定一次函数表达式
- 12【330913】一次函数知识点总结
- 13【330911】一次函数与一次方程的联系
- 14【330912】一次函数知识点归纳
- 15【330908】新人教版初中数学八年级下册同步练习试题及答案_第20章 数据的分析(22页)
- 16【330910】一次函数的图象和性质
- 17【330909】一次函数
- 18【330907】新人教版八年级数学下第18章《平行四边形》单元试卷
- 19【330906】新人教版八年级数学下第16章《二次根式》单元试卷
- 20【330904】湘教版八年级数学下《第5章数据的频数分布》单元试卷含答案
- 【330905】湘教版八年级数学下册全册综合测试题
- 【330903】湘教版八年级数学下《第3章图形与坐标》单元试卷含答案
- 【330901】湘教版八年级数学下《第1章直角三角形》单元试卷含答案
- 【330902】湘教版八年级数学下《第2章四边形》单元试卷含答案
- 【330900】五种类型一次函数解析式的确定
- 【330899】同步练习试题及答案_第19章 一次函数(10页)
- 【330898】同步练习试题及答案_第18章 平行四行形(40页)
- 【330897】同步练习试题及答案_第17章 勾股定理(20页)
- 【330896】同步练习试题及答案_第16章 二次根式(19页)
- 【330894】思想方法专题:直角三角形中的思想方法
- 【330895】特殊平行四边形知识点归纳
- 【330893】思想方法专题:矩形中的折叠问题
- 【330892】思想方法专题:勾股定理中的思想方法
- 【330891】数学培优辅差工作计划3
- 【330890】数学培优辅差工作计划2
- 【330889】数学培优辅差工作计划1
- 【330888】三角形的中位线
- 【330887】人教版数学八年级上同期末达标检测卷2
- 【330886】人教版数学八年级上同期末达标检测卷1
- 【330885】人教版数学八年级上册期中达标测试卷