当前位置:首页 > 八年级 > 数学试卷

【329264】(人教版)八年级数学下册《平行四边形的判定》提高测试卷及答案

时间:2025-01-21 12:51:47 作者: 字数:4260字
简介:

平行四边形的判定

一、选择题(每小题4,12)

1.(2013·宁波中考)如果三角形的两条边分别为46,那么连接该三角形三边中点所得三角形的周长可能是(  )

A.6 B.8 C.10 D.12

2 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> .(2013·枣庄中考)如图,△ABC,AB=AC=10,BC=8,

AD平分∠BACBC于点D,EAC的中点,连接DE,

则△CDE的周长为(  )

A.20 B.12 C.14 D.13

3 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> .如图,AB∥CD,E,F分别为AC,B <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> D的中点,AB=5,

CD=3,EF的长是(  )

A.4 B.3

C.2 D.1

二、填空题(每小题4,12)

4 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> .(2013·烟台中考)如图,▱ABCD的周长为36.对角线AC,BD相交于点O.ECD的中点.BD=12.则△DOE的周长为    .

5.如图所示,在四边形ABCD,P为对角线BD的中点,E,F分别为AB,CD的中点,AD=BC,∠PEF=18°,则∠PFE的度数是   .

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a>

6 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> .如图,△ABC的周长是32,以它的三边中点为顶点组成第2个三角形,再以第2个三角形的三边中点为顶点组成第3个三角形,…,则第n个三角形的周长为    .[来源:||]

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> 、解答题(26)

7.(8)已知,如图,在四边形ABCD,E,F,G,H分别是AB,BC,CD,DA的中点.

求证:四边形EFGH是平行四边形.

8.(8)已知,如图,在▱ABCD,ECD的中点,FAE的中点,FCBE交于点G.求证:GF=GC.

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a>

【拓展延伸】

9.(10)已知:在△ABC,BC <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> >AC,动点D绕△ABC的顶点A逆时针旋转,AD=BC,连接DC.AB,DC的中点E,F作直线,直线EF与直线AD,BC分别相交于点M,N.

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a>

(1)如图1,当点D旋转到BC的延长线上时,N恰好与点 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> F重合,AC的中点H,连接HE,HF,根据三角形中位线定理和平行线的性质,可得∠AMF与∠ENB有何数量关系?(不需证明).[来源:..Z.X.X.K]

(2)当点D旋转到图2或图3中的位置时,∠AMF与∠ENB有何数量关系?请分别写出猜想,并任选一种情况证明.




答案解析

1.【解析】B.设三角形的三边分别是a, <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> b,c,a=4,b=6 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> ,2<c<10,12<三角形的周长<20,

6<中点三角形周长<10.

2.【解析】C.∵AB=AC=10,BC=8,AD平分∠BAC,

BD=CD=4,

EAC的中点,∴CE=5,DE= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> AB=5,

∴△CDE的周长为CD+DE+EC=4+5+5=14.

3.【解析】D.连接DE并延长交ABH.

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a>

AB∥CD,∴∠C=∠A,∠CDE=∠AHE.

EAC的中点,∴AE=EC,∴△DCE≌△HAE.

DE=HE,DC=AH.

FBD的中点,∴EF是三角形DHB <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> 的中位线,

EF= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> BH,BH=AB- <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> AH=AB-DC=2,

EF=1.

【归纳整合】与中位线定理有关的辅助线作法

(1)如果有中线可将中线延长一倍.

(2)如果有线段倍分问题时可考虑作中位线.

(3)如果有中点,可在同一三角形一边上取中点,作中位线,或构造一个三角形,使图形中的线段为所构造三角形的中位线.

4.【解析】ABCD <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> 的周长为36,∴BC+CD=18.

四边形ABCD为平行四边形,

OBD的中点,∴OD=6,

又∵ECD的中点,

OE是△BCD的中位线,

OE= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> BC,DE= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> CD,∴OE+DE=9,

∴△DOE的周长=OD <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> +OE+DE=6+9=15.

答案:15

5.【解析】因为P,E分别是BD,AB的中点,所以PE是△ABD的中位线,所以PE= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> AD.

同理可得:PF= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> BC.

又∵AD <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> =BC,∴PE=PF,[来源:Zxxk.Com]

即∠PFE=∠PEF=18°.

答案:18°

6.【解析】根据三角形中位线定理可得第二个三角形的各边的边长都等于最大三角形对应各边边长的一半,那么第二个三角形的周长=△ABC的周长× <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a>  <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> =32× <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> ,

第三个三角形的周长=△ABC的周长× <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> × <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> =32× <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> ,...,

n个三角形的周长=32× <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> =26-n.

答案:26-n

7.【证明】连接AC.

E,F分别是AB,BC的中点,

EF∥AC,EF= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> AC. <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a>

同理可得GH∥AC,GH= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> AC.

EF∥GHEF=GH,

四边形EFGH是平行四边形.

8.【证明】BE的中点H,连接FH,CH,[来源:§§Z§X§X§K]

FAE的中点,∴FH∥ <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> AB,FH= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> AB,

CD∥AB,CD=AB,CE= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> CD,

CE∥FH,CE=FH,[来源:学科网ZXXK]

四边形CEFH是平行四边形,∴GF=GC.

9.【解析】(1)1:∠AMF=∠ENB.

( <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> 2)2: <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> ∠AMF=∠ENB;

3:∠AMF+∠ENB=180°.

证明:如图,AC的中点H,

连接HE,HF.

FDC的中点,HAC的中点,

HF∥AD,HF= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> AD,

 <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a>AMF=∠HFE,

同理,HE∥CB,HE= <a href="/tags/4/" title="测试" class="c1" target="_blank">测试</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> CB,∴∠ENB=∠HEF.

AD=BC,∴HF=HE,∴∠HEF=∠HFE,

∴∠ENB=∠AMF.