当前位置:首页 > 八年级 > 数学试卷

【324294】2024八年级数学下册 专题突破 第05讲 平行四边形存在性问题专题复习(含解析)(新

时间:2025-01-15 21:54:00 作者: 字数:29453字
简介:


 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> 5讲平行四边形存在性问题专题复习

知识点睛:

平行四边形存在性问题

1.知识储备:①平行四边形是中心对称图形

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> 中心对称图形的性质:对称中心平分中心对称图形内通过该点的任意线段,且使中心对称图形的面积被平分

中点公式:

2.方法策略

1)有3个定点,找第4个点形成平行四边形时:

设第4个点的坐标

3个定点组成的3条线段为对角线分类讨论

以中心对称图形的性质为等量关系列式求解

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ,如图所示,平面直角坐标系内有ABC三点,在平面内找第4个点,构成平行四边形;













  1. 2个定点,且另外两个动点均在特殊的位置上时,方法策略同上。

Shape2

如,当AB已知,点C在直线y=x上,点D在另一直线上,则设Ca,a);分类还分别分①以AB为对角线,②以AC为对角线,③以BC为对角线;依其性质分别表示出D点坐标;将点D坐标再分别带入另一直线解析式,即可求出a的值,CD坐标就都能求出来了。










类型一几何背景下的平行四边形存在性问题

1.如图,在平行四边形ABCD中,ACBD交于点M,点FAD上,AF6cmBF12cm,∠FBM=∠CBM,点EBC的中点,若点P1cm/秒的速度从点A出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动.点P运动到F点时停止运动,点Q也同时停止运动.当点P运动  秒时,以点PQEF为顶点的四边形是平行四边形.

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

【分析】由四边形ABCD是平行四边形得出:ADBCADBC,∠ADB=∠CBD,证得FBFD,求出AD的长,得出CE的长,设当点P运动t秒时,点PQEF为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.

【解答】解:∵四边形ABCD是平行四边形,

ADBCADBC

∴∠ADB=∠CBD

∵∠FBM=∠CBM

∴∠FBD=∠FDB

FBFD12cm

AF6cm

AD18cm

EBC的中点,

CE <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> BC <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> AD9cm

要使点PQEF为顶点的四边形是平行四边形,则PFEQ即可,

设当点P运动t秒时,点PQEF为顶点的四边形是平行四边形,

根据题意得:6﹣t9﹣2t6﹣t2t﹣9

解得:t3t5

故答案为:35

2.(遂宁期末)如图,平行四边形ABCD中,AB8cmAD12cm,点PAD边上以每秒1cm的速度从点A向点D运动,点QBC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止).在运动以后,当t  时以PDQB四点组成的四边形为平行四边形.

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

【分析】根据平行四边形的判定可得当DPBQ时,以点PDQB为顶点组成平行四边形,然后分情况讨论,再列出方程,求出方程的解即可.

【解答】解:设经过t秒,以点PDQB为顶点组成平行四边形,

以点PDQB为顶点组成平行四边形,

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> DPBQ

分为以下情况:①点Q的运动路线是CB,方程为12﹣4t12﹣t

此时方程t0,此时不符合题意;

Q的运动路线是CBC,方程为4t﹣1212﹣t

解得:t4.8

Q的运动路线是CBCB,方程为12﹣4t﹣24)=12﹣t

解得:t8

Q的运动路线是CBCBC,方程为4t﹣3612﹣t

解得:t9.6

综上所述,t4.8s8s9.6s时,以PDQB四点组成的四边形为平行四边形,

故答案为:4.8s8s9.6s

3.(丹东期末)如图,四边形ABCD中,ABDCDC6cmAB9cm.点P1cm/s的速度由A点向B点运动,同时点Q2cm/s的速度由C点向D点运动,其中一点到达终点时,另一点也停止运动,当线段PQ将四边形ABCD截出一个平行四边形时,此时的运动时间为  s

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

【分析】设运动时间为t,由题意可得APtcmPB=(9﹣tcmCQ2tcmDQ=(6﹣2tcm,分两种情况列出方程则可得出答案.

【解答】解:设运动时间为ts,由题意可得APtcmPB=(9﹣tcmCQ2tcmDQ=(6﹣2tcm

DQAP

DQAP时,四边形APQD为平行四边形,

6﹣2tt

t2

CQPB

CQPB时,四边形CQPB为平行四边形,

2t9﹣t

t3

综合以上可得t23s时,线段PQ将四边形ABCD截出一个平行四边形.

故答案为23

4.(宁波期中)如图,在四边形ABCD中,ADBC,∠C90°BC16DC12AD21.动点P从点D出发,沿线段DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点PQ分别从点DC同时出发,当点P运动到点A时,点Q随之停止运动.设运动的时间为t(秒).

1)当t2时,求△BPQ的面积;

2)若四边形ABQP为平行四边形,求运动时间t

3)当t为何值时,以BPQ三点为顶点的三角形是等腰三角形?

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

【分析】(1)若过点PPMBCM,则四边形PDCM为矩形,得出PMDC12,由QB16﹣t,可知:S <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> PM×QB96﹣6t

2)当四边形ABQP为平行四边形时,APBQ,即21﹣2t16﹣t,可将t求出;

3)本题应分三种情况进行讨论,①若PQBQ,在Rt△PQM中,由PQ2PM2+MQ2PQQB,将各数据代入,可将时间t求出;

BPBQ,在Rt△PMB中,由PB2BM2+PM2BPBQ,将数据代入,可将时间t求出;

PBPQPB2PM2+BM2PBPQ,将数据代入,可将时间t求出.

【解答】解:(1)过点PPMBCM,则四边形PDCM为矩形.

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> PMDC12

QB16﹣t

S <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> QBPM <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> 16﹣t×1296﹣6t0≤t <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ).

t2代入得到:S96﹣1284


2)当四边形ABQP是平行四边形时,APBQ

21﹣2t16﹣t

解得:t5

t5时,四边形ABQP是平行四边形.


3)由图可知,CMPD2tCQt,若以BPQ为顶点的三角形是等腰三角形,可以分三种情况:

PQBQ,在Rt△PMQ中,PQ2t2+122,由PQ2BQ2t2+122=(16﹣t2,解得t <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

BPBQ,在Rt△PMB中,PB2=(16﹣2t2+122,由PB2BQ2得(16﹣2t2+122=(16﹣t2,即3t2﹣32t+1440

此时,△=(﹣322﹣4×3×144=﹣7040

所以此方程无解,∴BPBQ

PBPQ,由PB2PQ2t2+122=(16﹣2t2+122t1 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> t216(不合题意,舍去).

综上所述,当t <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> t <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> 时,以BPQ三点为顶点的三角形是等腰三角形.

类型二“三定一动”求平行四边形的顶点坐标

1.(婺城区校级模拟)把▱ABCD放入平面直角坐标系中,已知对角线的交点为原点,点A的坐标为(2,﹣3),点C的坐标为(  )

A.(﹣32 B.(32 C.(﹣23 D.(23

【分析】因为平行四边形是中心对称图形,若对角线的交点为原点时,则A点与C点关于原点对称,从而根据A点坐标可求C点坐标.

【解答】解:∵平行四边形是中心对称图形,

所以当其对角线的交点为原点时,则A点与C点关于原点对称,

A2,﹣3),

C(﹣23).

故选:C

2 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> .(绵阳期末)如图,在平行四边形OABC中,对角线相交于点EOA边在x轴上,点O为坐标原点,已知点A40),E31),则点C的坐标为(  )

A.(11 B.(12 C.(21 D.(22

【分析】分别过EC两点作EFx轴,CGx轴,垂足分别为FG,由平行四边形的性质可得CG2EFAG2AF,结合AE两点坐标可求解CGOG的长,进而求解C点坐标.

【解答】解:分别过EC两点作EFx轴,CGx轴,垂足分别为FG

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> EFCG

四边形ABCD为平行四边形,

AECE

AG2AFCG2EF

A40),E31),

OA4OF3EF1

AFOAOF4﹣31CG2

AG2

OGOAOG4﹣22

C22).

故选:D

3 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> .(天津)如图,▱ABCD的顶点ABC的坐标分别是(01),(﹣2,﹣2),(2,﹣2),则顶点D的坐标是(  )

A.(﹣41 B.(4,﹣2

C.(41 D.(21

【分析】首先根据BC两点的坐标确定线段BC的长,然后根据A点向右平移线段BC的长度得到D点,即可由A点坐标求得点D的坐标.

【解答】解:∵BC的坐标分别是(﹣2,﹣2),(2,﹣2),

BC2﹣(﹣2)=2+24

四边形ABCD是平行四边形,

ADBC4

A的坐标为(01),

D的坐标为(41),

故选:C

4.(思明区校级月考)【阅读】在平面直角坐标系中,以任意两点Px1y1)、Qx2y2)为端点的线段中点坐标为( <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>  <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

【运用】(1)已知O为▱ABCD的对角线ACBD交点,点B的坐标为(43),则点D的坐标为(﹣11),则O的坐标为  

2)在直角坐标系中,有A(﹣12),B31),C14)三点,另有一点D与点ABC构成平行四边形的顶点,求点D的坐标.(提示:运用阅读材料完成)

【分析】(1)由平行四边形的性质得出OBD的中点,利用中点坐标公式代入可得M的坐标;

2)存在三种情况:①当ACBC为平行四边形的边时,

BCCD2为平行四边形的边时,

ACAB为平行四边形的边时;分别根据平行四边形对角线互相平分,即对角线的交点即为对角线的中点,由中点坐标公式代入可得结论.

【解答】解:(1)∵O为▱ABCD的对角线ACBD交点,

OBOD,即OBD的中点,

O的横坐标为 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>  <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ,纵坐标为 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> 2

O的坐标为( <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> 2);

故答案为:( <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> 2);

2)如图所示:

ACBC为平行四边形的边时,连接对角线ABCD1交于E

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> AEEBCEED1

A(﹣12),B31),

E1 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ),

C14),

D11,﹣1);

BCCD2为平行四边形的边时,连接对角线BD2AC交于G

同理可得D2(﹣35);

ACAB为平行四边形的边时,连接AD3BC交于F

同理可得D353);

综上所述,点D的坐标为(1,﹣1)或(﹣35)或(53).

5.(玄武区校级月考)已知坐标系中有OABC四个点,其中点O00),A30),B11),若以OABC为顶点的四边形是平行四边形,则C的坐标是  

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> 分析】由平行四边形的判定,分三种情况进行讨论即可.

【解答】解:如图所示:

分三种情况:①AB为对角线时,点C的坐标为(41);

OB为对角线时,点C的坐标为(﹣21);

OA为对角线时,点C的坐标为(2,﹣1);

综上所述,点C的坐标为(41)或(﹣21)或(2,﹣1),

故答案为:(41)或(﹣21)或(2,﹣1).

6.(南岸区期末)如图,平面直角坐标系中,已知点A(﹣31),B43),且CDx轴上一条长度为3的线段.

1)求AC+CD+DB的最小值,并求出此时点D的坐标;

2)在(1)的条件下,当AC+CD+DB取得最小值时,平面直角坐标系内是否存在一点E,使得点BCDE构成的四边形为平行四边形,若存在,请直接写出点E的坐标;若不存在,请说明理由.

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

【分析】(1)如图,把点A(﹣31)向右平移3个单位,得到点A'01).点B关于x轴的对称点B'4,﹣3),连接A'B',与x轴的交点为D.此时AC+CD+DB取得最小值,最小值为CD+A'B',根据两点间的距离公式得到CD+A'B' <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ,过点B'B'Fy轴,垂足为F,则B'FA'F4,于是得到结论;

2)当CDBE3CDBE,点BCDE构成的四边形为平行四边形,当CD为对角线,即E(﹣5,﹣3),根据平行四边形的性质即可得到结论.

【解答】解:(1)如图,把点A(﹣31)向右平移3个单位,得到点A'01).

B关于x轴的对称点B'4,﹣3),连接A'B',与x轴的交点为D

此时AC+CD+DB取得最小值,最小值为CD+A'B'

即最小值为CD+A'B' <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>B'B'Fy轴,垂足为F,则B'FA'F4

∴∠OA'D45°

ODA'O

∴∠A'OD90°

A'ODO1

D10);


2)存在,

理由:当CDBE3CDBE,点BCDE构成的四边形为平行四边形,

B43),

E点的坐标为(73)或(13).

CD为对角线,即E(﹣5,﹣3),

综上所述,点E的坐标为(73)或(13)或(﹣5,﹣3).

7.(岳麓区校级期中)如图,在平面直角坐标系中,矩形OABC的三个顶点AOC在坐标轴上,矩形的面积为12,对角线AC所在直线的解析式为ykx﹣4kk≠0).

1)求AC的坐标;

2)若DAC中点,过D的直线交y轴负半轴于E,交BCF,且OE1,求直线EF的解析式;

3)在(2)的条件下,在坐标平面内是否存在一点G,使以CDFG为顶点的四边形为平行四边形?若存在,请直接写出点G的坐标;若不存在,请说明理由.

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

【分析】(1)对于ykx﹣4k,令y0,即kx﹣4k0,解得x4,则点C40),则OC4,而矩形的面积=AOOC4OA12,解得OA3,即可求解;

2)若DAC中点,则点D2 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ),而点E0,﹣1),用待定系数法即可求解;

3)分CD是边、CD为对角线两种情况,利用平移的性质和中点公式分别求解即可.

【解答】解:(1)对于ykx﹣4k,令y0,即kx﹣4k0,解得x4

故点A40),则OA4

而矩形的面积=AOOC4OA12,解得OC3

故点C03);


2)若DAC中点,则点D2 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ),

OE1,故点E0,﹣1),

设直线EF的表达式为ymx+n,则 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ,解得 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

故直线EF的表达式为y <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> x﹣1


3)存在,理由:

对于y <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> x﹣1,令y3 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> x﹣1,解得x <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ,故点F <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> 3),

而点CD的坐标分别为(03)、(2 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ),设点Gab),

CD是边时,

C向右平移2个单位向下平移 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> 个单位得到点D,同样,点FG)向右平移2个单位向下平移 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> 个单位得到点GF),

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> +2a3﹣ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> b <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> 2a3+ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> b

解得 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

故点G的坐标为( <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>  <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> )或( <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>  <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> );

CD为对角线时,

由中点公式得: <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> 0+2)= <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> a+ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> )且 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> 3+ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> )= <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> b+3),解得 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

故点G的坐标为(﹣ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>  <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> );

故点G的坐标为( <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>  <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> )或( <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>  <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> )或(﹣ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>  <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ).

8.如图,已知AB两点是直线ABx轴的正半轴,y轴的正半轴的交点,如果OAOB的长分别是x2﹣14x+480的两个根(OAOB),射线BC平分∠ABOx轴于C点,

1)求OAOB的长.

2)求点C的坐标.

3)在坐标平面内找点Q,使ABCQ四个点为顶点的四边形是平行四边形,求出符合条件的点Q的坐标.

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

【分析】(1)首先根据x2﹣14x+480,求出方程的两个根是多少;然后根据OAOB,求出OAOB的长各是多少即可.

2)首先根据射线BC平分∠ABOx轴于C点,设∠OBC=∠ABCα,则tan2α <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>  <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ,据此求出tanα的值是多少;然后求出OC的值是多少,即可确定出点C的坐标.

3)根据题意,分三种情况:①当ACBQ为四边形ABCQ的两条对角线时;②当AQBC为四边形ABCQ的两条对角线时;③当ABCQ为四边形ABCQ的两条对角线时;然后根据平行四边形的性质,分类讨论,求出符合条件的点Q的坐标是多少即可.

【解答】解:(1)由x2﹣14x+480

解得x6x8

OAOB

OA80B6

OA的长是8OB的长是6


2)∵射线BC平分∠ABOx轴于C点,

设∠OBC=∠ABCα

tan2α <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>  <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

整理,可得

2tan2α+3tanα﹣20

解得tanα <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> tanα=﹣2

α为锐角,

tanα=﹣2舍去,

tanα <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>OC3

C的坐标是(30).


3)①如图1ACBQ交于点D

设点Q的坐标是(ab),

ABCQ

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> =﹣ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> …(1),

四边形ABCQ是平行四边形,

DACBQ的中点,

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>2),

由(1)(2),可得

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> Q的坐标是(11,﹣6).


如图2AQBC交于点E

设点Q的坐标是(cd),

ACBQ

d6

四边形ABCQ是平行四边形,

EAQBC的中点,

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

解得c=﹣5

Q的坐标是(﹣56).


 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> 如图3ABCQ交于点F

设点Q的坐标是(ef),

ACBQ

f6

四边形ABCQ是平行四边形,

FABCQ的中点,

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

解得e5

Q的坐标是(56).

综上,可得点Q的坐标是(11,﹣6)、(﹣56)或(56).

类型三“两定两动”求平行四边形的顶点坐标

1.如图,在平面直角坐标系xOy,直线yx+1y=﹣2x+4交于点A,两直线与x轴分别交于点B和点CD是直线AC上的一个动点,直线AB上是否存在点E,使得以EDOA为顶点的四边形是平行四边形?若存在,求出点E的坐标;若不存在,请说明理由.

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

【分析】当OEAC时,由相互平行的两条直线的一次项系数相同,可得到直线OE的解析式,然后将OEAB的解析式联立,组成方程组从而可求得点E的坐标;

DEOA时,ODAB时,先求得OD的解析式,然后联立ODAC,求得点D的坐标,然后再求得DE的解析式,将DEAB联立,组成方程组可解得点E的坐标.

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> 解答】解:①如下图:当OEAD时,

OEAC

所以直线OE的解析式为y=﹣2x

联立OEAB,得

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

解得 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

E1(﹣ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>  <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> );

如下图:当DEOA时,ODAB时, <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

ODAB

直线OD的解析式为yx

联立ODAC,得 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

解得 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

D <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>  <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ).

联立ABAC <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

解得 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

A12).

OA的解析式为y2x

DEOA

设直线DE的解析式为y2x+b

将点D的坐标代入直线的解析式得:y2x <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

联立DEAB <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

解得 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

E2 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>  <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ).

OA为对角线时,

A12),

OA的中点坐标为( <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> 1),

D在直线y=﹣2x+4上,

Dm,﹣2m+4),

E在直线yx+1上,

Enn+1),

DE的中点坐标为( <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>  <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ),

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>  <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>  <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> 1

m <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> n=﹣ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

E(﹣ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>  <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

综上所述:E1(﹣ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>  <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ),E2 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>  <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ).

2.(高明区期末)如图,在平面直角坐标系中,直线y=﹣ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> x+3x轴、y轴相交于AB两点,点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到线段CD,此时点D恰好落在直线AB上,过点DDEx轴于点E

1)求证:△BOC≌△CED

2)请直接写出点D的坐标,并求出直线BC的函数关系式;

3)若点Px轴上的一个动点,点Q是线段CB上的点(不与点BC重合),是否存在以CDPQ为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的P点坐标.若不存在,请说明理由.

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

【分析】(1)利用同角的余角相等可得出∠OBC=∠ECD,由旋转的性质可得出BCCD,结合∠BOC=∠CED90°即可证出△BOC≌△CEDAAS);

2)利用一次函数图象上点的坐标特征可求出点B的坐标,设OCm,则点D的坐标为(m+3m),利用一次函数图象上点的坐标特征可求出m值,进而可得出点CD的坐标,由点BC的坐标,利用待定系数法可求出直线BC的解析式;

3)设点Qx,﹣3x+3),由题意得DQPCDQPC,则点Q的纵坐标=点D的纵坐标=1,求出x <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ,则PCDQ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ,设点P的坐标为(a0),分两种情况,由平行四边形的性质得出方程,解方程即可.

【解答】(1)证明:∵∠BOC=∠BCD=∠CED90°

∴∠OCB+∠OBC90°,∠OCB+∠ECD90°

∴∠OBC=∠ECD

将线段CB绕着点C顺时针旋转90°得到CD

BCCD

在△BOC和△CED中, <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

∴△BOC≌△CEDAAS);

2)解:在y=﹣ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> x+3中,令x0,则y3

y0,则x6

B的坐标为(03),点A的坐标为(60),

OCm

由(1)得:△BOC≌△CED

OCEDmBOCE3

D的坐标为(m+3m),

D在直线y=﹣ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> x+3上,

m=﹣ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> m+3+3

解得:m1

D的坐标为(41),点C的坐标为(10),

设直线BC的解析式为ykx+b

B03)、C10)代入解析式得: <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

解得: <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

直线BC的解析式为y=﹣3x+3

3)解:存在,理由如下:

Q在线段CB上,直线BC的解析式为y=﹣3x+3

设点Qx,﹣3x+3),

Px轴上,以CDPQ为顶点的四边形是平行四边形,

DQPCDQPC

Q的纵坐标=点D的纵坐标=1

∴﹣3x+31

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> 得:x <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

PCDQ4﹣ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>  <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

设点P的坐标为(a0),分两种情况:

如图1所示:

1﹣a <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> 得:a=﹣ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

P(﹣ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> 0);

如图2所示:

a﹣1 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

a <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

P <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> 0);

综上所述,存在以CDPQ为顶点的四边形是平行四边形,P点坐标为(﹣ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> 0)或( <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> 0).

3.(渝中区校级期末)如图,Rt△OAC是一张放在平面直角坐标系中的直角三角形纸片,点O与原点重合,点Ax轴上,点Cy轴上,OA6,∠CAO30°,将Rt△OAC折叠,使OC边落在AC边上,点O与点D重合,折痕为CE

1)求点D的坐标;

2)在线段AC上有一动点P,连接EPOP,求当△OPE周长最小时,点P的坐标,若MNx轴上两动点(M在点N左侧)且MN1,求当四边形CMNP周长最小时,M点的坐标;

3)设点M为直线CE上的一点,过点MAC的平行线,交y轴于点N,是否存在这样的点M,使得以MNDC为顶点的四边形是平行四边形?若存在,请求出符合条件的点M的坐标;若不存在,请说明理由.

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

【分析】(1)利用翻折的性质以及直角三角形的性质即可求解;

2)如图2中,作点E关于AC的对称点E,连接OEAC于点P,此时PE+OP的值最小,即△OPE的周长最小.求出直线ACOE的解析式,构建方程组求出交点P的坐标;过点P关于x轴的对称点P',作P'Kx轴,且P'K1,连接CKAO于点M,根据点P坐标,由对称性可得P'的坐标,K的坐标,可求直线CK的解析式,即可求点M的坐标;

3)因为MNCD,所以当CDMN时,四边形CDMN是平行四边形,推出点M的横坐标为3,由直线EC的解析式为y=﹣ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> x+2 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ,可得点M的纵坐标为y=﹣3 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> +2 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> =﹣ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ,推出M3,﹣ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ),根据对称性可知的M根源点C的对称点M也满足条件.

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> 解答】解:(1)如图1,过点DDHOAH

Rt△AOC中,

∵∠OAC30°,∠AOC90°OA6

∴∠ACO60°OCOA•tan30°2 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> AC4 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

由翻折可知:∠ECA=∠ECO30°

OCCD2 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ,∠AOC=∠CDE90°

ADACCD2 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ,且∠OAC30°DHAO

DH <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> AH <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> DH3

OHOAAH3

D3 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> );

2)如图2中,作点E关于AC的对称点E,连接OEAC于点P,此时PE+OP的值最小,即△ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> OPE的周长最小,过EEFOAF

由(1)知,AD2 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ,∠CDE90°,∠CAO30°

DE2,∠DEA60°AE4

EE4OEOAAE2

EFOA

EF2EF2 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

OFOE+EF4

E42 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ),

直线OE的解析式为y <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> x

OA6OC2 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

直线AC的解析式为y=﹣ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> x+2 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ,解得 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

P <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>  <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> );

过点P关于x轴的对称点P',作P'Kx轴,且P'K1,连接CKAO于点M,此时四边形CMNP周长最小.

P关于x轴的对称点P'

P' <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ,﹣ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> );

P'KOAP'K1

K <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ,﹣ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ),

设直线CK的解析式为:ykx+2 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ,过点K <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ,﹣ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ),

∴﹣ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>  <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> k+2 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

k=﹣ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

直线CK的解析式为:y=﹣ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> x+2 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

y0时,x <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> M <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> 0);

3)如图3中,连接QD

MNCD

CDMN时,四边形CDMN是平行四边形,

M的横坐标为3

直线EC的解析式为y=﹣ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> x+2 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

Q的纵坐标为y=﹣3 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> +2 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> =﹣ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

Q3,﹣ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ),

根据对称性可知点Q关于点C的对称点Q也满足条件,可得Q(﹣35 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ),

综上所述,满足条件的点Q的坐标为(3,﹣ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> )或(﹣35 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ).


4.(杭州期中)如图,在平面直角坐标系xOy中,已知点Aa2),Bb0),且ab满足 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> +b2﹣8b+160

1)求ab的值;

2)在坐标轴上是否存在点C,使△ABC是以线段AB为底的等腰三角形?若存在,试求出点C的坐标:若不存在,试说明理由.

3)点A关于点(0,﹣1)对称的点D坐标为  

是否存在点PQ,满足点Px轴上,点Qy轴上,且以ADPQ为顶点的四边形是平行四边形?若存在,试求出点PQ的坐标;若不存在,试说明理由.

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

【分析】(1)由二次根式及偶次方非负,即可求出ab的值;

2)由(1)可得出AB的坐标,作线段AB的垂直平分线CF,交x轴于点C1,交y轴于点C2,交线段AB于点F,过点AAEx轴于点E,易证△ABE∽△C1BF,利用相似三角形的性质可求出点C1的坐标,根据点C1F的坐标,利用待定系数法可求出直线CF的解析式,利用一次函数图象上点的坐标特征即可得出点C2的坐标,综上即可得出结论;

3)由点A的坐标可求出点D的坐标,假设存在,设点P的坐标为(m0),点Q的坐标为(0n).分AD为边及为对角线两种情况考虑,①当AD为边时,根据平行四边形的性质可得出关于mn的二元一次方程组,解之即可得出点PQ的坐标;②当AD为对角线时,根据对角线互相平分,即可得出关于mn的二元一次方程组,解之即可得出点PQ的坐标.综上即可得出结论.

【解答】解:(1)∵ab满足 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> +b2﹣8b+160,即 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> +b﹣420

a <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> 0b﹣40

a <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> b4

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> 2)∵a <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> b4

A的坐标为( <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> 2),点B的坐标为(40).

作线段AB的垂直平分线CF,交x轴于点C1,交y轴于点C2,交线段AB于点F,过点AAEx轴于点E,如图1所示.

A <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> 2),B40),

AE2BE <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> AB <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>  <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

BF <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> AB <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

∵∠ABE=∠C1BF,∠AEB=∠C1FB90°

∴△ABE∽△C1BF

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>  <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ,即 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>  <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

C1B <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

C1的坐标为( <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> 0).

F为线段AB的中点,

F的坐标为( <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> 1).

设直线CF的解析式为ykx+bk≠0),

C1 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> 0)、F <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> 1)代入ykx+b,得:

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ,解得: <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

直线CF的解析式为y <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> x <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

C2的坐标为(0,﹣ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ).

综上,在坐标轴上存在点C,使△ABC是以线段AB为底的等腰三角形,点C的坐标为( <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> 0)或(0,﹣ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ).

3)∵点A、点D关于点(0,﹣1)对称

D的坐标为(﹣ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ,﹣4).

故答案为:(﹣ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ,﹣4).

假设存在,设点P的坐标为(m0),点Q的坐标为(0n).

AD为边及为对角线两种情况考虑(如图2):

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> AD为边时,四边形ADP1Q1为平行四边形,

A <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> 2),D(﹣ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ,﹣4),

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

解得: <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

P1的坐标为(﹣50),点Q1的坐标为(06);

AD为边时,四边形ADQ2P2为平行四边形,

A <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> 2),D(﹣ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ,﹣4),

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

解得: <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

P2的坐标为(50),点Q2的坐标为(0,﹣6);

AD为对角线时,四边形AP3DQ3为平行四边形,

A <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> 2),D(﹣ <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a> ,﹣4),

 <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

解得: <a href="/tags/14/" title="复习" class="c1" target="_blank">复习</a> <a href="/tags/38/" title="突破" class="c1" target="_blank">突破</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/58/" title="平行" class="c1" target="_blank">平行</a> <a href="/tags/82/" title="平行四边形" class="c1" target="_blank">平行四边形</a> <a href="/tags/129/" title="四边形" class="c1" target="_blank">四边形</a>

P3的坐标为(00),点Q3的坐标为(0,﹣2).

综上所述:存在点PQ,满足点Px轴上,点Qy轴上,且以ADPQ为顶点的四边形是平行四边形,点P1(﹣50)、Q106)或P250)、Q20,﹣6)或P300)、Q30,﹣2).






1