当前位置:首页 > 八年级 > 数学试卷

【324289】2024八年级数学下册 专题22 反比例函数的综合问题(含解析)(新版)浙教版

时间:2025-01-15 21:53:35 作者: 字数:50916字
简介:


专题22 反比例函数的综合问题

一.选择题(共9小题,满分18分,每小题2分)

1.(2分)(武进区模拟)在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(10),顶点A的坐标(02),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C的坐标为(  )

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

A.( <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 0 B.(20 C.( <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 0 D.(30

【思路点拨】过点BBDx轴于点D,易证△ACO≌△BCDAAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.

【规范解答】解:过点BBDx轴于点D,如图,

∵∠ACO+∠BCD90°

OAC+∠ACO90°

∴∠OAC=∠BCD

在△ACO与△BCD中,

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

∴△ACO≌△BCDAAS).

OCBDOACD

A02),C10

OD3BD1

B31),

设反比例函数的解析式为y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

B31)代入y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

k3

y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

y2代入y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

x <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

当顶点A恰好落在该双曲线上时,

此时点A移动了 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 个单位长度,

C也移动了 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 个单位长度.

此时点C的对应点C的坐标为( <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 0).

故选:A

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

【考点评析】本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.

2.(2分)(罗湖区校级模拟)如图,已知点A是一次函数y2x的图象与反比例函数y=﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 的图象在第一象限内的交点,ABx轴于点B,点Cx轴的负半轴上,且∠ACB=∠OAB,△AOB的面积为4,则点C的坐标为(  )

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

A.(﹣50 B.(﹣60 C.(﹣5.50 D.(﹣40

【思路点拨】利用△AOB的面积为4即可求得k=﹣8,然后解方程组 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 得到A点坐标,即OBAB的长,再由∠ACB=∠OAB得到Rt△BAO∽Rt△BCA,利用三角形相似的性质得OBBABABC,即244BC,求出BC,得到OC,从而确定C点坐标.

【规范解答】解:设A点坐标为(ab),

∵△AOB的面积为4

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ab4,即ab8

而点A在反比例函数y=﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 的图象上,

k=﹣ab=﹣8,即y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

解方程组 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

解得 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

A点坐标为(24);

又∵∠ACB=∠OAB

Rt△BAO∽Rt△BCA

OBBABABC,即244BC

BC8

OC6

C点坐标为(﹣60).

故选:B

【考点评析】本题考查了有关反比例函数的综合题:利用几何性质得到反比例函数的解析式,再建立两函数的解析式得到它们函数图象的交点坐标,从而得到有关线段的长,然后利用三角形相似的性质求其他相关线段的长.

3.(2分)(聊城模拟)函数y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 在第一象限内的图象如图所示,点Py <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 的图象上一动点,作PCx轴于点C,交y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 的图象于点A,作PDy轴于点D,交y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 的图象于点B,给出如下结论:①△ODB与△OCA的面积相等;②PAPB始终相等;③四边形PAOB的面积大小不会发生变化;④PA3AC,其中正确的结论序号是(  )

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

A.①②③ B.②③④ C.①③④ D.①②④

【思路点拨】设点P的坐标为(m <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> )(m0),则Am <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ),Cm0),B <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ),D0 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ).①根据反比例函数系数k的几何意义即可得出SODBSOCA,该结论正确;②由点的坐标可找出PA <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> PB <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,由此可得出只有m2PAPB,该结论不成;③利用分割图形法求图形面积结合反比例系数k的几何意义即可得知该结论成立;④结合点的坐标即可找出PA <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> AC <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,由此可得出该结论成立.综上即可得出正确的结论为①③④.

【规范解答】解:设点P的坐标为(m <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> )(m0),则Am <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ),Cm0),B <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ),D0 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ).

SODB <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ×1 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> SOCA <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ×1 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

∴△ODB与△OCA的面积相等,①成立;

PA <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> PBm <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

PAPB,即 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

解得:m2

m2时,PAPB,②不正确;

S四边形PAOBS矩形OCPDSODBSOCA4﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 3

四边形PAOB的面积大小不会发生变化,③正确;

④∵PA <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> AC <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 0 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

PA3AC,④正确.

综上可知:正确的结论有①③④.

故选:C

【考点评析】本题考查了反比例函数图象上点的坐标特征、反比例函数系数k的几何意义以及利用分割图形法求图形面积,解题的关键是找出各点坐标再结合反比例函数系数k的几何意义逐项分析各结论是否正确.本题属于中档题,难度不大,解决该题型题目时,根据反比例函数图象上点的坐标特征表示出各点的坐标是关键.

4.(2分)(滨州模拟)如图,Rt△ABC的直角边BCx轴正半轴上,斜边AC边上的中线BD反向延长线交y轴负半轴于E,双曲线y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 的图象经过点A,若△BEC的面积为6,则k等于(  )

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

A3 B6 C12 D24

【思路点拨】先根据题意证明△BOE∽△CBA,根据相似比及面积公式得出BOAB的值即为|k|的值,再由函数所在的象限确定k的值.

【规范解答】解:∵BDRt△ABC的斜边AC上的中线,

BDDC <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> AC

∴∠DBC=∠ACB

又∵∠DBC=∠EBO

∴∠EBO=∠ACB

又∵∠BOE=∠CBA90°

∴△BOE∽△CBA

BOBCOEAB

BCOEBOAB

又∵SBEC6

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> BCEO6

BCOE12

|k|BOABBCOE12

又∵反比例函数图象在第一象限,k0

k12

故选:C

【考点评析】此题主要考查了反比例函数y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> k的几何意义、相似三角形的判定与性质以及直角三角形的性质.此题难度较大,注意掌握数形结合思想的应用.

5.(2分)(惠城区一模)如图,四边形OABC是平行四边形,对角线OBy轴上,位于第一象限的点A和第二象限的点C分别在双曲线y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 的一支上,分别过点ACx轴的垂线垂足分别为MN,则有以下的结论:①ONOM;②△OMA≌△ONC;③阴影部分面积是 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> k1+k2);④四边形OABC是菱形,则图中曲线关于y轴对称,其中正确的结论是(  )

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

A.①②④ B.②③ C.①③④ D.①④

【思路点拨】先判断出CEONADOM,再判断出CEAD,即可判断出①正确;由于四边形OABC是平行四边形,所以OA不一定等于OC,即可得出②错误;先求出三角形COM的面积,再求出三角形AOM的面积求和即可判断出③错误,根据菱形的性质判断出OBACOBAC互相平分即可得出④正确.

【规范解答】解:如图,过点AADy轴于D,过点CCEyE

AMx轴,CMx轴,OBMN

∴∠AMO=∠DOM=∠ADO=∠CNO=∠EON=∠CEO90°

四边形ONCE和四边形OMAD是矩形,

ONCEOMAD

OB是▱OABC的对角线,

∴△BOC≌△OBA

SBOCSOBA

SBOC <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> OB×CESBOA <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> OB×AD

CEAD

ONOM,故①正确;


Rt△CONRt△AOM中,ONOM

四边形OABC是平行四边形,

OAOC不一定相等,

∴△CON与△AOM不一定全等,故②错误;


第二象限的点C在双曲线y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 上,

SCON <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> |k2|=﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> k2

第一象限的点A在双曲线y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 上,

SAOM <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> |k1| <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> k1

S阴影SCON+SAOM=﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> k2+ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> k1 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> k1k2),

故③错误;


四边形OABC是菱形,

ACOBACOB互相平分,

A和点C的纵坐标相等,点A与点C的横坐标互为相反数,

A与点C关于y轴对称,

k2=﹣k1,即:四边形是菱形,则图中曲线关于y轴对称,故④正确,

正确的有①④,

故选:D

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

【考点评析】此题是反比例函数综合题,主要考查了反比例函数的性质,平行四边形的性质,全等三角形的判定和性质,菱形的性质,判断出CEAD是解本题的关键.

6.(2分)(无棣县一模)如图,四边形OABF中,∠OAB=∠B90°,点Ax轴上,双曲线y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 过点F,交AB于点E,连接EF.若 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> SBEF4,则k的值为(  )

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

A6 B8 C12 D16

【思路点拨】由于 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,可以设Fmn)则OA3mBF2m,由于SBEF4,则BE <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,然后即可求出E3mn <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ),依据mn3mn <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> )可求mn6,即求出k的值.

【规范解答】解:如图,过FFCOAC

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

OA3OCBF2OC

若设Fmn

OA3mBF2m

SBEF4

BE <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

E3mn <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

E在双曲线y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

mn3mn <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

mn6

k6

故选:A

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

【考点评析】此题主要考查了反比例函数的图象和性质、用坐标表示线段长和三角形面积,表示出E点坐标是解题关键.

7.(2分)(渠县校级期末)两个反比例函数 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 在第一象限内的图象如图所示,点P <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 的图象上,PCx轴于点C,交 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 的图象于点APDy轴于点D,交 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 的图象于点B,当点P <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 的图象上运动时,以下结论:

①△ODB与△OCA的面积相等;

四边形PAOB的面积不会发生变化;

PAPB始终相等;

当点APC的中点时,点B一定是PD的中点.

其中一定正确的是(  )

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

A.①②③ B.②③④ C.①②④ D.①③④

【思路点拨】本题考查的是反比例函数中k的几何意义,无论如何变化,只要知道过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是个恒等值即易解题.

【规范解答】解:由反比例函数系数k的几何意义判断各结论:

①△ODB与△OCA的面积相等;正确,由于AB在同一反比例函数图象上,则两三角形面积相等,都为 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

四边形PAOB的面积不会发生变化;正确,由于矩形OCPD、三角形ODB、三角形OCA为定值,则四边形PAOB的面积不会发生变化;

PAPB始终相等;错误,不一定,只有当四边形OCPD为正方形时满足PAPB

连接OP,点APC的中点,

则△OAP和△OAC的面积相等,

∵△ODP的面积=△OCP的面积= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,△ODB与△OCA的面积相等,

∴△OBP与△OAP的面积相等,

∴△OBD和△OBP面积相等,

B一定是PD的中点.

故一定正确的是①②④.

故选:C

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

【考点评析】本题考查了反比例函数y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> k≠0)中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.

8.(2分)(宣州区校级自主招生)如图,矩形OABC的两边落在坐标轴上,反比例函数y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 的图象在第一象限的分支交AB于点P,交BC于点E,直线PEy轴于点D,交x轴于点F,连接AC.则下列结论:

S四边形ACFPk

四边形ADEC为平行四边形;

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,则 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

SCEF1SPBE4,则k6

其中正确的是(  )

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

A.①②④ B.①② C.②④ D.①③

【思路点拨】设点B的坐标为(ba),得到A0a),Cb0),进而求出P <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> a),Eb <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ),再求出直线PE的解析式为y=﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> x+ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> +a,进而求出F <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> +b0),进而判断出四边形ACFP是平行四边形,再用平行四边形的面积公式判断出①正确,由四边形ACFP是平行四边形,判断出ACDF,进而判断出②正确;由 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,判断出ab4k,再求出点D坐标,即可判断出③错误;先由SCEF1,判断出 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 2,再由SPBE4,得出 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> b <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> )•(a <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> )=4,计算之后,判断出④正确,即可得出结论.

【规范解答】解:设点B的坐标为(ba),

四边形ABCD为矩形,

A0a),Cb0),

PE在反比例函数图形上,

P <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> a),Eb <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ),

直线PE的解析式为y=﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> x+ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> +a

y0,则﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> x+ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> +a0

x <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> +b

F <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> +b0),

CF <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> +bb <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

P <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> a),

AP <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

APCF

四边形OABC是矩形,

OABCABOC

四边形ACFP是平行四边形,

S四边形ACFPCFOA <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ak,故①正确;

四边形ACFP是平行四边形,

ACDF

OA∥∥BC

四边形ADEC是平行四边形,故②正确;

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

Bba),

ABb

P <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> a),

AP <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

ab4k

直线PE的解析式为y=﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> x+ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> +a

D0 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> +a),

A0a),

AD <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> +aa <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,故③错误;

SCEF1

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> × <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> × <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 1

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 2

SPBE4

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> b <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> )•(a <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> )=4

abkk+ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 8

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> k2﹣2k﹣60

k=﹣2(舍)或k6,故④正确,

正确的有①②④,

故选:A

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

【考点评析】此题是反比例函数综合题,主要考查了矩形的性质,三角形平行四边形的面积公式,平行四边形的判定和性质,待定系数法,判断出四边形APFC是平行四边形是解本题的关键.

9.(2分)(乌鲁木齐)如图,在直角坐标系xOy中,点AB分别在x轴和y轴, <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> .∠AOB的角平分线与OA的垂直平分线交于点C,与AB交于点D,反比例函数y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 的图象过点C.当以CD为边的正方形的面积为 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 时,k的值是(  )

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

A2 B3 C5 D7

【思路点拨】设OA3a,则OB4a,利用待定系数法即可求得直线AB的解析式,直线CD的解析式是yxOA的中垂线的解析式是x <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,解方程组即可求得CD的坐标,根据以CD为边的正方形的面积为 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,即CD2 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,据此即可列方程求得a2的值,则k即可求解.

【规范解答】解:设OA3a,则OB4a

A3a0),B04a).

设直线AB的解析式是ykx+b

则根据题意得: <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

解得: <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

则直线AB的解析式是y=﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> x+4a

直线CD是∠AOB的平分线,则OD的解析式是yx

根据题意得: <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

解得: <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

D的坐标是( <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ),

OA的中垂线的解析式是x <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,则C的坐标是( <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ),

C点坐标代入反比例函数y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

k <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

OA的垂直平分线交x轴于点F,过点DDEx轴于点E,如图,

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

OFCF <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> OEDE <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> a

∵∠DOA45°

∴△COF和△DOE为等腰直角三角形,

OC <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> OF <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> aOD <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> OE <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> a

CDODOC=( <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> )= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> )= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> a

CD为边的正方形的面积为 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

a2 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

k <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> × <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 7

故选:D

【考点评析】本题考查了待定系数法求函数解析式,正确求得CD的坐标是解决本题的关键.

二.填空题(共10小题,满分20分,每小题2分)

10.(2分)(舟山期末)如图,平行四边形AOBC中,对角线交于点E,双曲线 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> k0)经过AE两点,若平行四边形AOBC的面积为24,则k 8 

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

【思路点拨】设出点A的横坐标为x,根据点A在双曲线 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> k0)上,表示出点A的纵坐标,从而表示出点A的坐标,再根据点Bx轴上设出点B的坐标为(a0),然后过AADOBDEFOBF,如图,根据平行四边形的性质对角线互相平分得到点EAB的中点,又EFAD,得到EF为△ABD的中位线,可得EFAD的一半,而ADA的纵坐标,可得出EF的长,由OBOD可得BD的长,根据FBD的中点,得到FB的长,由OBFB可得出OF的长,由E在第一象限,由EFOF的长表示出E的坐标,代入反比例解析式中,得到a3x,再由BOAD的积为平行四边形的面积,表示出平行四边形的面积,根据平行四边形AOBC的面积为24,列出等式,将a3x代入可得出k的值.

【规范解答】解:设Ax <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ),Ba0),过AADOBDEFOBF,如图,

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

由平行四边形的性质可知AEEB

EF为△ABD的中位线,

由三角形的中位线定理得:EF <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> AD <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> DF <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ax),OF <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

E <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ),

E在双曲线上,

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> k

a3x

平行四边形的面积是24

a <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 3x <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 3k24

解得:k8

故答案为:8

【考点评析】此题考查了反比例函数的应用,涉及的知识有:平行线的性质,三角形中位线定理,平行四边形的性质,平行四边形及三角形的面积公式,以及点坐标与线段的关系,是一道综合性较强的题,本题的突破点是作出如图的辅助线,建立点坐标与线段长度的联系.

11.(2分)(大安市期末)两个反比例函数 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 在第一象限内的图象如图所示,点P <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 的图象上,PCx轴于点C,交 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 的图象于点APDy轴于点D,交 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 的图象于点B,当点P <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PAPB始终相等;④当点APC的中点时,点B一定是PD的中点.其中一定正确的是 ①②④ 

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

【思路点拨】设Ax1y1),Bx2y2),而AB两点都在 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 的图象上,故有x1y1x2y21,而SODB <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ×BD×OD <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> x2y2 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> SOCA <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ×OC×AC <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> x1y1 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,故①正确;

AB两点坐标可知Px1y2),P点在 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 的图象上,故S矩形OCPDOC×PDx1y2k,根据S四边形PAOBS矩形OCPDSODBSOCA,计算结果,故②正确;

由已知得x1y2k,即x1 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> k,即x1kx2,由ABP三点坐标可知PAy2y1 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> PBx1x2,=(k﹣1x2,故③错误;

当点APC的中点时,y22y1,代入x1y2k中,得2x1y1k,故k2,代入x1kx2中,得x12x2,可知④正确.

【规范解答】解:(1)设Ax1y1),Bx2y2),则有x1y1x2y21

SODB <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ×BD×OD <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> x2y2 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> SOCA <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ×OC×AC <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> x1y1 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,故①正确;


2)由已知,得Px1y2),

P点在 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 的图象上,

S矩形OCPDOC×PDx1y2k

S四边形PAOBS矩形OCPDSODBSOCAk <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> k﹣1,故②正确;


3)由已知得x1y2k,即x1 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> k

x1kx2

根据题意,得PAy2y1 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> PBx1x2,=(k﹣1x2,故③错误;


4)当点APC的中点时,y22y1

代入x1y2k中,得2x1y1k

k2

代入x1kx2中,得x12x2,故④正确.


故本题答案为:①②④.

【考点评析】本题考查了反比例函数性质的综合运用,涉及点的坐标转化,相等长度的表示方法,三角形、四边形面积的计算,充分运用双曲线上点的横坐标与纵坐标的积等于反比例系数k

12.(2分)(镇海区校级自主招生)如图,△OAP、△ABQ均是等腰直角三角形,点PQ在函数y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> x0)的图象上,直角顶点AB均在x轴上,则点B的坐标为 (1+ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 0) 

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

【思路点拨】若△OAP是等腰直角三角形,那么∠POA45°,即直线OPyx,联立双曲线解析式可求得P22),即A20),然后结合直线OP的斜率求得直线AQ的解析式,联立反比例函数解析式即可得到点Q点坐标,由于BQ的横坐标相同,即可得解.

【规范解答】解:∵△OAP是等腰直角三角形,

直线OPyx,联立y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> x0)可得P22),

A20),

由于直线OPAQ,可设直线AQyx+h,则有:

2+h0h=﹣2

直线AQyx﹣2

联立y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> x0)可得Q1+ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 1),即B1+ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 0).

故答案为:(1+ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 0).

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

【考点评析】此题主要考查了等腰直角三角形的性质以及函数图象交点坐标的求法,难度适中.

13.(2分)(深圳校级二模)如图,已知四边形ABCD是平行四边形,BC3ABAB两点的坐标分别是(﹣10),(02),CD两点在反比例函数y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> x0)的图象上,则k的值等于 ﹣24 

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

【思路点拨】设点C坐标为(a <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ),根据ACBD的中点坐标相同,可得出点D的坐标,将点D的坐标代入函数解析式可得出k关于a的表达式,再由BC3AB3 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,可求出a的值,继而得出k的值.

【规范解答】解:设点C坐标为(a <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ),(a0),点D的坐标为(xy).

四边形ABCD是平行四边形,

ACBD的中点坐标相同,

a﹣1 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> +0)=(x+0y+2),

xa﹣1y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

代入y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,可得:k2a﹣2a2

Rt△AOB中,AB <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

BC3AB3 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

BC2=(0﹣a2+ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 22=(3 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 2

整理得:a4+k2﹣4ka41a2

将①k2a﹣2a2,代入后化简可得:a29

a0

a=﹣3

k=﹣6﹣18=﹣24

故答案为:﹣24

方法二:

因为ABCD是平行四边形,所以点CD是点AB分别向左平移a,向上平移b得到的.

故设点C坐标是(﹣a2+b),点D坐标是(﹣1﹣ab),(a0b0

根据k的几何意义,|﹣a|×|2+b||﹣1﹣a|×|b|

整理得2a+abb+ab

解得b2a

过点Dx轴垂线,交x轴于H点,在直角三角形ADH中,

由已知易得AD3 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> AHaDHb2a

AD2AH2+DH2,即45a2+4a2

a3

所以D坐标是(﹣46

所以|k|24,由函数图象在第二象限,

所以k=﹣24

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

【考点评析】本题考查了反比例函数的综合题,涉及了平行四边形的性质、中点的坐标及解方程的知识,解答本题有两个点需要注意:①设出点C坐标,表示出点D坐标,代入反比例函数解析式;②根据BC3AB3 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,得出方程,难度较大,注意仔细运算.

14.(2分)(锦州模拟)如图,矩形OABC的两边OAOC分别在x轴、y轴的正半轴上,OA4OC2G为矩形对角线的交点,经过点G的双曲线 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> BC相交于点M,则CMMB 13 

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

【思路点拨】由于G为矩形对角线的交点,那么GOB的中点,而OA4OC2,由此可以确定D的坐标,然后可以求出函数的解析式,又双曲线 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> BC相交于点M,所以M的纵坐标是2,代入解析式即可求出横坐标,也就求出CM的长度,这样就可以解决题目的问题.

【规范解答】解:∵G为矩形OABC对角线的交点,

而,OA4OC2

G的坐标为(21),

k2

y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

双曲线 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> BC相交于点M

M的纵坐标是2

M的横坐标x1

CM1

MB3

CMMB13

故答案为:13

【考点评析】此题主要考查了反比例函数图象和性质,也利用了点的坐标与线段长度的关系及矩形的性质,首先利用矩形的性质确定反比例函数解析式,然后利用图象和性质解决问题.

15.(2分)(瓯海区校级自主招生)直线ya分别与直线y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> x和双曲线y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 交于DA两点,过点AD分别作x轴的垂线段,垂足为点BC.若四边形ABCD是正方形,则a的值为 ±1± <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

【思路点拨】先根据直线ya分别与直线y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> x和双曲线y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 交于DA两点用a表示出AD两点的坐标,再根据四边形ABCD是正方形可得出ABAD,由此即可求出a的值.

【规范解答】解:∵直线ya分别与直线y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> x和双曲线y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 交于点DA

A <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> a),D2aa),

当直线在x轴的正半轴时,

四边形ABCD是正方形,

ABAD,即2a <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> a,解得a=﹣1a1

当直线在x轴的负半轴时,

同理可得,2a <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> =﹣a,解得a± <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

故答案为:±1± <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

【考点评析】本题考查的是反比例函数综合题,根据题意求出AD两点的坐标是解答此题的关键.

16.(2分)(前进区期末)如图,在x轴的正半轴上依次截取OA1A1A2A2A3,…,过点A1A2A3、…分别作x轴的垂线与反比例函数 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 的图象相交于点P1P2P3、…,得直角三角形OP1A1A1P2A2A2P3A3、…,设其面积分别为S1S2S3、…,则Sn的值为  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

【思路点拨】因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,S <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,由反比例函数解析式中k2,得出△OA1P1,△OA2P2,△OA3P3,…,△OAnPn的面积都为1,而An﹣1AnOAn <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,且△An﹣1AnPn与△OAnPn的高为同一条高,故△An﹣1AnPn的面积为△OAnPn的面积的 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,由△OAnPn的面积都为1,得出△An﹣1AnPn的面积,即为Sn的值.

【规范解答】解:连接OP2OP3,…,OPn,如图所示:

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,

S <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 1,即SOA1P1SOA2P2SOA3P3=…=SOAnPn1

OA1A1A2A2A3=…=An﹣1An,∴An﹣1An <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> OAn

SnSAn﹣1AnPn <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> SOAnPn <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

故答案为: <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

【考点评析】此题属于反比例函数的综合题,涉及的主要知识有:反比例函数y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> k≠0)中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

17.(2分)(咸阳模拟)如图,已知梯形ABCO的底边AOx轴上,BCAOABAO,过点C的双曲线 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> OBD,且ODDB12,若△OBC的面积等于3,则k的值是  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

【思路点拨】设Cxy),BCa.过D点作DEOAE点.

根据DEAB得比例线段表示点D坐标;根据△OBC的面积等于3得关系式,列方程组求解.

【规范解答】解:方法一、设Cxy),BCa

AByOAx+a

D点作DEOAE点.

ODDB12DEAB

∴△ODE∽△OBA,相似比为ODOB13

DE <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> AB <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> yOE <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> OA <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> x+a).

D点在反比例函数的图象上,且D <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> x+a), <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> y),

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> x+a)=k,即xy+ya9k

C点在反比例函数的图象上,则xyk

ya8k

∵△OBC的面积等于3

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ya3,即ya6

8k6k <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

方法二、过D点作DEOAE点.延长BCy轴于点F

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

D,点Cy <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 上的两点,

SODESOFC

BCAOABAO,∠AOF90°

四边形ABFO是矩形,

SAOBSBOF

SOBCS四边形ABDE3

DEAB

∴△ODE∽△OBA

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> =( <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 2 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

SOAB9SODE

S四边形ABDE38SODE

SODE <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

k <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

故答案为: <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

【考点评析】此题考查了反比例函数的应用、平行线分线段成比例及有关图形面积的综合运用,综合性较强.

18.(2分)(•永嘉县校级期末)如图,在平面直角坐标系中有Rt△ABC,∠A90°ABACA(﹣10)、B11),将△ABC沿x轴的正方向平移,在第一象限内BC两点的对应点B1C1正好落在反比例函数 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 的图象上,则k 6 

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

【思路点拨】过CCM垂直于x轴,过BBN垂直于x轴,由ACAB垂直,得到一对角互余,再由CMMA垂直,得到一对角互余,利用同角的余角相等得到一对角相等,再由ABAC,且一对直角相等,利用AAS得出三角形ACM与三角形ABN全等,由全等三角形的对应边相等得到CMANAMBN,由AB的坐标得出AMCM的长,由OA+AM求出OM的长,确定出C的坐标,由平移的性质得到C1B1的纵坐标不变,且横坐标相差3,设出C1B1的坐标,分别代入反比例解析式中,得到两个关系式,消去k求出m的值,即可得到k的值.

【规范解答】解:过CCMx轴,过BBNx轴,

∵∠CAB90°

∴∠CAM+∠BAN90°,又∠MCA+∠CAM90°

∴∠MCA=∠NAB

在△ACM和△BAN中,

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

∴△ACM≌△BANAAS),

A(﹣10)、B11),

CMAN2AMBN1

C(﹣22),

设反比例函数为y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> k≠0),点C1B1在该比例函数图象上,

由平移的性质,可设C1m2),则B1m+31),

把点C1B1的坐标分别代入y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,得k2mkm+3

2mm+3,解得:m3

k6

故答案为:6

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

【考点评析】此题属于反比例函数综合题,涉及的知识有:全等三角形的判定与性质,坐标与图形性质,平移的性质,以及反比例函数的性质,熟练掌握性质是解本题的关键.

19.(2分)(陕西校级模拟)如图,反比例函数y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> x0)的图象经过矩形OABC对角线的交点M,分别与ABBC相交于点DE.若四边形ODBE的面积为6,则k的值为 2 

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

【思路点拨】设M点坐标为(ab),而M点在反比例函数图象上,则kab,即y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,由点M为矩形OABC对角线的交点,根据矩形的性质易得A2a0),C02b),B2a2b),利用坐标的表示方法得到D点的横坐标为2aE点的纵坐标为2b,而点D、点E在反比例函数y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 的图象上(即它们的横纵坐标之积为ab),可得D点的纵坐标为 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> bE点的横坐标为 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> a,利用S矩形OABCSOAD+SOCE+S四边形ODBE,得到2a•2b <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 2a <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> b+ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> •2b <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> a+6,求出ab,即可得到k的值.

【规范解答】解:设M点坐标为(ab),则kab,即y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

M为矩形OABC对角线的交点,

A2a0),C02b),B2a2b),

D点的横坐标为2aE点的纵坐标为2b

又∵点D、点E在反比例函数y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 的图象上,

D点的纵坐标为 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> bE点的横坐标为 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> a

S矩形OABCSOAD+SOCE+S四边形ODBE

2a•2b <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 2a <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> b+ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> •2b <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> a+6

ab2

k2

故答案为2

【考点评析】本题考查了反比例函数综合题:先设反比例函数图象上某点的坐标,然后利用矩形的性质和反比例函数图象上点的坐标特点表示其它有关点的坐标,然后利用面积公式建立等量关系,从而解决问题.

三.解答题(共8小题,满分62分)

20.(8分)(济南期末)如图,函数y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> x0)的图象过点An2)和B <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 2n﹣3)两点.

1)求nk的值;

2)将直线OA沿x轴向左移动得直线DE,交x轴于点D,交y轴于点E,交y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> x0)于点C,若SACO6,求直线DE解析式;

3)在(2)的条件下,第二象限内是否存在点F,使得△DEF为等腰直角三角形,若存在,请直接写出点F的坐标;若不存在,请说明理由.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

【思路点拨】(1)把AB点坐标代入反比例函数解析式列出nk的方程组便可求得nk的值;

2)由A点坐标求得直线OA的解析式,设Cm <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ),过CCHx轴与OA交于点H,根据SACO6,列出m的方程求得C点坐标,由平移性质设直线DE的解析式,再代入C点坐标便可求得结果;

3)先求出DE的坐标,再分三种情况:①当∠EDF90°DEDF时,②当∠DEF90°DEEF时,③当∠DFE90°DFEF时,分别构造全等三角形求得F点坐标便可.

【规范解答】解:(1)∵函数y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> x0)的图象过点An2)和B <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 2n﹣3)两点.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

解得, <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

2)由(1)知,A42),

设直线OA的解析式为yaxa≠0),则

24a

a <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

直线OA的解析式为:y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

由(1)知反比例函数的解析式为:y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

Cm <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ),过CCHx轴与OA交于点H,如图1

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

Hm <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> m),

CH <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

SACO6

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

解得,m=﹣8(舍),或m2

C24),

将直线OA沿x轴向左移动得直线DE

设直线DE的解析式为:y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> x+c

C24)代入y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> x+c中,得41+c

解得,c3

直线DE的解析式为:y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> x+3

3)令x0,得y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> x+33

y0,得y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> x+30,解得x=﹣6

D(﹣60),E03),

当∠EDF90°DEDF时,如图2,过FFGx轴于点G

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

∵∠ODE+∠FDG=∠ODE+∠OED90°

∴∠OED=∠GDF

∵∠DOE=∠FGD90°DEFD

∴△ODE≌△GFDAAS),

DG0E3FGDO6

F(﹣96);

当∠DEF90°DEEF时,如图3,过FFGy轴于点G

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

∵∠ODE+∠DEO=∠GEF+∠OED90°

∴∠ODE=∠GEF

∵∠DOE=∠FGE90°DEEF

∴△ODE≌△GEFAAS),

EGDO6FGEO3

F(﹣39);

当∠DFE90°DFEF时,如图4,过点FFGx轴于点G,作FHy轴于点H

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

∴∠DFE=∠GFH90°

∴∠DFG=∠EFH

∵∠DGF=∠EHF90°DFEF

∴△DGF≌△EHFAAS),

GFHFDGEH

∵∠FGO=∠GOH=∠OHF90°

四边形OGFH为正方形,

OGOH,即6﹣DG3+EH

DGEH <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

OGOH <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

F <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> );

综上,第二象限内存在点F,使得△DEF为等腰直角三角形,其F点的坐标为(﹣96)或(﹣39)或(﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ).

【考点评析】本题是反比例函数的综合题,主要考查了反比例函数的图象与性质,待定系数法,三角形的面积,平移的性质,一次函数的图象与性质,全等三角形的性质与判定,第(3)题的关键在于构造全等三角形和分情况讨论.

21.(6分)(姑苏区校级月考)如图,一次函数ykx+b与反比例函数y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 的图象交于点A16),B3n)两点.

1)求反比例函数和一次函数的表达式;

2)连接OAOB,求△AOB的面积;

3)直线a经过点(01)且平行于x轴,点M在直线a上,点Ny轴上,以 ABMN为顶点的四边形可以是平行四边形吗?如果可以,直接写出点MN的坐标,如果不可以,说明理由.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

【思路点拨】(1)用待定系数法即可求解;

2)由△AOB的面积=SAOHSBOH,即可求解;

3)当AB是对角线时,由中点坐标公式列出函数关系式,即可求解;当AMAN)是对角线时,同理可解.

【规范解答】解:(1)将点A的坐标代入反比例函数表达式得:6 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,解得:m6

故反比例函数表达式为:y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

x3时,y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 2,即点B32),

由题意得: <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,解得: <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

故一次函数的表达式为:y=﹣2x+8


2)设ABx轴于点H

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

y=﹣2x+80,解得:x4,即OH4

则△AOB的面积=SAOHSBOH <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ×4×6﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 4×28


3)设点MN的坐标别为(m1)、(0n),

AB是对角线时,由中点坐标公式得: <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,解得: <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

即点MN的坐标分别为(41)、(07);

AM是对角线时,由中点坐标公式得: <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,解得: <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

即点MN的坐标分别为:(﹣21)、(05);

AN是对角线时,由中点坐标公式得: <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,解得: <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

即即点MN的坐标分别为:(﹣21)、(0,﹣3);

综上,点MN的坐标分别为(41)、(07)或(﹣21)、(05)或(﹣21)、(0,﹣3).

【考点评析】本题考查的是反比例函数综合运用,主要考查了待定系数法求一次函数和反比例函数解析式、三角形面积、平行四边形性质等,其中,分类求解是本题解题的关键.

22.(6分)(封丘县期中)如图,在平面直角坐标系中,点BD分别在反比例函数 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 的图象上,ABx轴于点ADCx轴于点CO是线段AC的中点,AB3DC2

1)求反比例函数 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 的表达式.

2)连接BDOBOD,求△ODB的面积.

3P是线段AB上的一个动点,Q是线段OB上的一个动点,试探究是否存在点P,使得△APQ是等腰直角三角形?若存在,直接写出符合条件的点P的坐标;若不存在,请说明理由.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

【思路点拨】(1)先求出B点坐标,再求出D点坐标,即可求函数的解析;

2)利用割补法可得SOBDS梯形ACDBSBAOSOCD

3)设Qt,﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> t),分三种情况讨论:①当∠PAQ90°时,APAQQ点与O点重合,此时P(﹣22); ②当∠APQ90°时,APPQt+2=﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> t,此时P(﹣2 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> );③当∠PQA90°时,PQAQt+2=﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> t,此时P(﹣2 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ).

【规范解答】解:(1)∵AB3

B点坐标轴为3

3=﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

x=﹣2

B(﹣23),

O是线段AC的中点,

C20),

CD2

D22),

k4

y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

2SOBDS梯形ACDBSBAOSOCD

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ×3+2×4﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ×2×3﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ×2×2

10﹣3﹣2

5

3)存在点P,使得△APQ是等腰直角三角形,理由如下:

设直线OB的解析式为ykx

∴﹣2k3

k=﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

y=﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> x

Qt,﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> t),

当∠PAQ90°时,APAQ

Q点与O点重合,

此时P(﹣22);

当∠APQ90°时,APPQ

t+2=﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> t

解得t=﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

P(﹣2 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> );

当∠PQA90°时,PQAQ

t+2=﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> t

解得t=﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

P(﹣2 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> );

综上所述:P点坐标为(﹣22)或(﹣2 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> )或(﹣2 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ).

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

【考点评析】本题考查反比例函数的图象及性质,熟练掌握反比例函数的图象及性质,等腰直角三角形的性质,梯形的面积,分类讨论是解题的关键.

23.(6分)(吴兴区期末)矩形OABC的顶点AC分别在xy轴的正半轴上,点F是边BC上的一个动点(不与点BC重合),过点F的反比例函数 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 的图象与边AB交于点E8m),AB4

1)如图1,若BE3AE

求反比例函数的表达式;

将矩形OABC折叠,使O点与F点重合,折痕分别与xy轴交于点HG,求线段OG的长度.

2)如图2,连接OFEF,请用含m的关系式表示OAEF的面积,并求OAEF的面积的最大值.


 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

【思路点拨】(1)①首先求出AE的长,从而得出点E的坐标,即可得出k的值;

利用反比例函数图象上点的坐标的特征求出CF的长,设OGx,则CG4﹣xFGx,利用勾股定理列方程,从而解决问题;

2)利用反比例函数图象上点的坐标的特征求出CF2m,再利用矩形面积减去△OCF和△BEF的面积,从而表示出四边形OAEF的面积,再利用配方法求出最大值.

【规范解答】解:(1)①∵BE3AEAB4

AE1BE3

E81),

k8×18

反比例函数表达式为y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

y4时,x2

F24),

CF2

OGx,则CG4﹣xFGx

由勾股定理得,

4﹣x2+22x2

解得x <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

OG <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

2)∵点EF在反比例函数 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 的图象上,

CF×48m

CF2m

四边形OAEF的面积为8×4﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> =﹣m2+4m+16=﹣(m﹣22+20

0m4

m2时,四边形OAEF的面积最大为20

【考点评析】本题是反比例函数综合题,主要考查了反比例函数图象上点的坐标的特征,翻折的性质,勾股定理,配方法求代数式的最值等知识,表示出四边形OAEF的面积是解题的关键.

24.(8分)(镇巴县期末)如图,一次函数yk1x+bk1≠0)与反比例函数y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> k2≠0)的图象交于点A23),Ba,﹣1),设直线ABx轴于点C

1)求反比例函数和一次函数的表达式;

2)若点P是反比例函数图象上的一点,且△POC是以OC为底边的等腰三角形,求P点的坐标.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

【思路点拨】(1)根据点AB都在反比例函数图象上,可得点B的坐标,再将AB代入一次函数解析式,解方程即可;

2)首先求出点C的坐标,由PCPO,可知点POC的垂直平分线上,从而解决问题.

【规范解答】解:(1)将点A23)代入 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 得,k22×36

y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

将点Ba,﹣1)代入y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 得,a=﹣6

B(﹣6,﹣1),

将点A23),B(﹣6,﹣1)代入yk1x+b得,

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

解得 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

一次函数的解析式为y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> x+2


2)当y0时, <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> x+20

x=﹣4

C(﹣40),

PCPO

POC的垂直平分线上,

P的横坐标为﹣2

P(﹣2,﹣3).

【考点评析】本题是反比例函数综合题,主要考查了待定系数法求函数解析式,函数与不等式的关系,等腰三角形的性质等知识,利用数形结合思想解决问题是解题的关键.

25.(8分)(达川区期末)如图,矩形OABC的顶点AC分别在xy轴的正半轴上,点B在反比例函数y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> k≠0)的第一象限内的图象上,OA4OC3,动点Px轴的上方,且满足SPAO <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> S矩形AOCB

1)若点P在这个反比例函数的图象上,求点P的坐标;

2)连接POPA,求PO+PA的最小值;

3)若点Q是平面内一点,使得以ABPQ为顶点的四边形是菱形,则请你直接写出满足条件的所有点Q的坐标.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

【思路点拨】(1)首先根据点B坐标,确定反比例函数的解析式,设点P的纵坐标为mm0),根据SPAO <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,构建方程即可解决问题;

2)过点(02),作直线ly轴.由(1)知,点P的纵坐标为2,推出点P在直线l上作点O关于直线l的对称点O,则OO4,连接AO交直线l于点P,此时PO+PA的值最小;

3)分四种情形分别求解即可解决问题;

【规范解答】解:(1)∵四边形OABC是矩形,OA4OC3

B的坐标为(43),

B在反比例函数y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> k≠0)的第一象限内的图象上

k12

y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

设点P的纵坐标为mm0),

SPAO <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> OAmOAOC <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

m2

当点,P在这个反比例函数图象上时,则2 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

x6

P的坐标为(62).


2)过点(02),作直线ly轴.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

由(1)知,点P的纵坐标为2

P在直线l

作点O关于直线l的对称点O,则OO4

连接AO交直线l于点P,此时PO+PA的值最小,

PO+PA的最小值=PO′+PAOA <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 4 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>


3

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

如图2中,当四边形ABQP是菱形时,易知ABAPPQBQ3P14﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 2),P24+ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 2),

Q14﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 5),Q24+ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 5).

如图3中,当四边形ABPQ是菱形时,P34﹣2 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 2),P44+2 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 2),

Q34﹣2 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,﹣1),Q44+2 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,﹣1).

综上所述,点Q的坐标为Q14﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 5),Q24+ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 5),Q34﹣2 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,﹣1),Q44+2 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,﹣1).

【考点评析】本题考查反比例函数综合题、矩形的性质、菱形的判定和性质、三角形的面积、轴对称最短问题等知识,解题的关键是灵活运用所学知识解决问题,学会理由轴对称解决最短问题,学会用分类讨论的首先思考问题,属于中考压轴题.

26.(10分)(姑苏区校级期中)如图,在平面直角坐标系中,已知△ABC中,ABAC,∠BAC90°,已知点A0,﹣6)、C(﹣3,﹣7),点B在第三象限内.

1)求点B的坐标;

2)将△ABC以每秒2个单位的速度沿y轴向上平移t秒,若存在某一时刻t,使在第二象限内点BC两点的对应点B'C'正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;

3)在(2)的情况下,问:是否存在x轴上的点P和反比例函数图象上的点Q,使得以PQB'C'四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点Q的坐标;若不存在,请说明理由.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

【思路点拨】(1)过点BBEy轴于点E,过点CCFy轴于点F,证明△ACF≌△BAE得出BEOE的长度便可求得B点坐标;

2)先用t表示BC点的坐标,再根据“B'C'正好落在某反比例函数的图象上”得BC点的横、纵坐标的积相等,列出t的方程求得t,进而求得反比例函数的解析式;

3)分各种情况:B'C'为平行四边形的边,B'C'为平行四边形的对角线.分别解答问题.

【规范解答】解:(1)如图1,过点BBEy轴于点E,过点CCFy轴于点F,则∠AFC=∠AEB90°

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

A0,﹣6),C(﹣3,﹣7),

CF3AF1

ABAC,∠BAC90°

∴∠CAF+∠BAE=∠CAF+∠ACF90°

∴∠ACF=∠BAE

∴△ACF≌△BAEAAS),

CFAE3AFBE1

OEOAAE6﹣33

B(﹣1,﹣3);

2)根据题意得,B(﹣1,﹣3+2t),C(﹣3,﹣7+2t),

设经过B'C'的反比例函数解析式为:y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> k≠0),

k=﹣(﹣3+2t)=﹣3(﹣7+2t),

解得,t <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

k=﹣(﹣3+2t)=3﹣9=﹣6

反比例函数的解析式为:y=﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

3)存在,

Pn0),

由(2)知B(﹣16),C(﹣32),

B'C'为平行四边形的边时,则BC′∥QPBCQP

Qn+24)或(n﹣2,﹣4),

Qn+24)代入y=﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 中,得,4n+2)=﹣6

解得,n=﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

Q(﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 4),

Qn﹣2,﹣4),代入y=﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 中,得,﹣4n﹣2)=﹣6

解得,n <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

Q <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,﹣4);

B'C'为对角线时,则B'C'的中点坐标为(﹣24),

PQ的中点坐标为(﹣24),

Q(﹣4﹣n8),

Q点坐标代入y=﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 中,得,8(﹣n﹣4)=﹣6

解得,n=﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

Q(﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 8),

综上,存在x轴上的点P和反比例函数图象上的点Q,使得以PQB'C'四个点为顶点的四边形是平行四边形.Q点坐标为(﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 4)或( <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,﹣4)或(﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 8).

【考点评析】本题是反比例函数综合题,考查了反比例函数的图象与性质,待定系数法,全等三角形的性质与判定,平行四边形的性质,关键是证明全等三角形和分情况讨论.

27.(10分)(南海区期末)如图1,平面直角坐标系xOy中,A(﹣43),反比例函数y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> k0)的图象分别交矩形ABOC的两边ACABEFEF不与A重合),沿着EF将矩形ABOC折叠使AD重合.

1)当点EAC中点时,求点F的坐标,并直接写出EF与对角线BC的关系;

2)如图2,连接CD

①△CDE的周长是否有最小值,若有,请求出最小值;若没有,请说明理由;

CD平分∠ACO时,直接写出k的值.


 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

【思路点拨】(1)连接BC,求出E(﹣23),即得k=﹣2×3=﹣6,从而F(﹣4 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ),可知EF是△ABC的中位线,故EFBCEFBC

2)连接BCAD,求出AF3+ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> AE <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> +4 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,可得 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,从而△AFE∽△ABC,∠AFE=∠ABC,即得EFBC,又AD关于EF对称,故ADEFD在过A且与BC垂直的直线上;①△CDE的周长有最小值,根据CCDECD+CE+DECD+CE+AECD+ACCD+4,知当CDAD时,CD取最小值,CCDE也取最小值,由△ACD∽△BCA,有 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,即可得△CDE的周长的最小值为 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> +4 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

D'x轴上时,由△ABD'∽△CAB,得BD' <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> D'(﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 0),可求出直线AD'解析式为y=﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> x <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,直线CD解析式为yx+3,联立 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,解得D(﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ),即得AD的中点坐标为(﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ),求出直线BC解析式为y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> x+3,设直线EF解析式为y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> x+m,把(﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> )代入得m <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,故F(﹣4 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ),k=﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> =﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

【规范解答】解:(1)连接BC,如图:


EAC的中点,

E(﹣23),

k=﹣2×3=﹣6

x=﹣4代入y=﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 得:y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

F(﹣4 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ),

A(﹣43),B(﹣40),

FAB的中点,

EF是△ABC的中位线,

EFBCEF <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> BC

2)连接BCAD,如图:


y3代入y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 得:x <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

x=﹣4代入y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 得,y=﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

AF3+ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> AE <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> +4 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

∵∠A=∠A

∴△AFE∽△ABC

∴∠AFE=∠ABC

EFBC

AD关于EF对称,

ADEF

ADBC

D在过A且与BC垂直的直线上;

①△CDE的周长有最小值,

如图:

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

CCDECD+CE+DECD+CE+AECD+ACCD+4

CDAD时,CD取最小值,CCDE也取最小值,

此时,点DBC上,

∵∠CAD90°﹣∠ACB=∠ABC,∠ADC90°=∠BAC

∴△ACD∽△BCA

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,即 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

解得CD <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

∴△CDE的周长的最小值为 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> +4 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

D'x轴上时,如图:


ADBC

∴∠BAD'90°﹣∠CAD'=∠ACB

∵∠ABD'90°=∠BAC

∴△ABD'∽△CAB

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,即 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

BD' <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

D'(﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 0),

A(﹣43),D'(﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> 0)可得直线AD'解析式为y=﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> x <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

CD平分∠ACO时,由C03)可得CDx轴的交点坐标为(﹣30),

直线CD解析式为yx+3

联立 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ,解得 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

D(﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ),

AD的中点坐标为(﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ),

B(﹣40),C03)可得直线BC解析式为y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> x+3,设直线EF解析式为y <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> x+m

把(﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> )代入得: <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ×(﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> +m

解得m <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

F(﹣4 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> ),

k=﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> =﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/279/" title="综合" class="c1" target="_blank">综合</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a>

【考点评析】本题考查反比例函数的综合应用,涉及待定系数法,三角形周长,相似三角形判定与性质等知识,解题的关键是掌握相似三角形判定定理


38