当前位置:首页 > 八年级 > 数学试卷

【324202】2024八年级数学下册 专题5.1 矩形重难点题型(含解析)(新版)浙教版

时间:2025-01-15 21:41:12 作者: 字数:40700字
简介:


 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> 专题5.1矩形-重难点题型

Shape1

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

Shape2

Shape3 知识点1 矩形的定义】

一个角是直角的平行四边形是矩形.

【知识点2 矩形的性质】

平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.

【题型1矩形的性质(求角的度数)】

【例1】(南京月考)如图,在矩形ABCD中,ACBD交于点ODEAC于点E,∠AOD110°,则∠CDE大小是(  )

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

A55° B40° C35° D20°

【分析】由矩形的性质得出OCOD,得出∠ODC=∠OCD55°,由直角三角形的性质求出∠ODE20°,即可得出答案.

【解答】解:∵四边形ABCD是矩形,

∴∠ADC90°ACBDOAOCOBOD

OCOD

∴∠ODC=∠OCD

∵∠AOD110°

∴∠DOE70°,∠ODC=∠OCD <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> 180°﹣70°)=55°

DEAC

∴∠ODE90°﹣∠DOE20°

∴∠CDE=∠ODC﹣∠ODE55°﹣20°35°

故选:C

【点评】本题主要考查了矩形的性质、等腰三角形的性质以及直角三角形的性质等知识;熟练掌握矩形的性质和等腰三角形的性质是解题的关键.

【变式1-1】(天津期中)如图,在矩形ABCD中,点ECD的中点,点FBC上一点,且FC2BF,连接AEEFAF.若AB2AD3,则∠AEF的大小为(  )

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

A30° B45° C60° D.不能确定

【分析】根据矩形的性质得出∠B=∠C90°CDAB2BCAD3,求出ABCF2BFCE1,根据全等三角形的判定推出△ABF≌△FCE,根据全等三角形的性质得出AFEF,∠BAF=∠CFE,求出∠AFE90°,再求出答案即可.

【解答】解:∵四边形ABCD是矩形,AD3AB2

∴∠B=∠C90°CDAB2BCAD3

ECD的中点,FC2BF

CEDE1BF1CF2

ABCF2CEBF1

在△ABF和△FCE中,

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

∴△ABF≌△FCESAS),

AFEF,∠BAF=∠CFE

∵∠B90°

∴∠BAF+∠AFB90°

∴∠CFE+∠AFB90°

∴∠AFE180°﹣(∠CFE+∠AFB)=180°﹣9°90°

∴△AFE是等腰直角三角形,

∴∠AEF45°

故选:B

【点评】本题考查了全等三角形的性质和判定,矩形的性质,等腰直角三角形的性质和判定等知识点,能综合运用定理进行推理和计算是解此题的关键.

【变式1-2】(秦淮区校级月考)如图,在矩形ABCD中,对角线ACBD相交于点O,若AE平分∠BAD交于点E,且BOBE,则∠CAE  

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

【分析】先证△ABE是等腰直角三角形,得AEBE,再证△BAO是等边三角形,得∠OAB60°,即可求解.

【解答】解:∵四边形ABCD是矩形,

ACBDOAOC <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> ACOBOD <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> BD,∠BAD90°

OAOB

AE平分∠BAD

∴∠BAE=∠DAE45°

∴△ABE是等腰直角三角形,

ABBE

BOBE

ABBOOA

∴△BAO是等边三角形,

∴∠OAB60°

∴∠CAE=∠OAB﹣∠BAE15°

故答案为:15°

【点评】本题考查了矩形的性质,等边三角形的判定与性质,等腰直角三角形的判定与性质等知识点;熟练掌握矩形的性质,证出△BAO为等边三角形是解此题的关键.

【变式1-3】(苏州期中)已知:如图,在矩形ABCD中,点EAD边上,且EC平分∠BED,若AB1BC <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> ,则∠ECD  °

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

【分析】过点CCMBEBEM,先证明△EMC≌△EDC,求得∠DCE=∠MCE,再证明△BMC为等腰直角三角形,求出∠MCD,最终求得∠ECD

【解答】解:过点CCMBEBEM,如图,

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

EC平分∠BED

∴∠CEM=∠CED

在△EMC和△EDC

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

∴△EMC≌△EDCAAS),

∴∠DCE=∠MCEMCDC1

Rt△BMC中,BM <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> 1MC

∴△BMC为等腰直角三角形,

∴∠MCD45°

∴∠MCD45°

∴∠ECD=∠MCE22.5°

故答案为:22.5

【点评】本题考查了角平分线与矩形的性质,利用角平分线的性质作垂直是解决本题的关键.

【题型2矩形的性质(求线段长度)】

【例2】(江阴市月考)如图,在矩形ABCD中,AB4BC8,对角线ACBD相交于点O,过点OOE垂直ACAD于点E,则DE的长是(  )

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

A3 B5 C2.4 D2.5

【分析】连接CE,由矩形的性质可得∠CDE90°ADBC8ABDC4AOOC,由OEACAOOC,可知OE垂直平分AC,则可得AECE;设DEx,则AECE8﹣x,在Rt△CDE中,由勾股定理得关于x的方程,求解即可.

【解答】解:连接CE,如图:

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

在矩形ABCD中,AB4BC8

∴∠CDE90°ADBC8ABDC4AOOC

OEAC

AECE

DEx,则AECE8﹣x

Rt△CDE中,由勾股定理得:DE2+DC2CE2

x2+42=(8﹣x2

解得x3

DE的长为3

故选:A

【点评】本题考查了矩形的性质、线段垂直平分线的性质及勾股定理等知识点,数形结合、熟练掌握相关性质及定理是解题的关键.

【变式2-1】(鄞州区校级期中)矩形ABCDECFG如图放置,点BCF共线,点CED共线,连接AG,取AG的中点H,连接EH.若ABCF4BCCE2,则EH=(  )

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

A <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> B2 C <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> D <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

【分析】由“ASA可证△ADH≌△GNH,可得DHHNNGAD2,由等腰直角三角形的性质可求解.

【解答】解:连接DH,并延长交EGN

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

ADEG

∴∠DAH=∠AGN

HAG的中点,

AHHG

在△ADH和△GNH中,

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

∴△ADH≌△GNHASA),

DHHNNGAD2

ABCDEG4BCCE2

DEEN2

又∵∠DEN90°

DN <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> DE2 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

DEENDHHN,∠DEN90°

EH <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> DN <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

故选:A

【点评】本题考查了全等三角形的判定和性质,矩形的性质,等腰直角三角形的性质,证明DEEN是本题的关键.

【变式2-2】(玄武区期中)如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BCAD于点EF,若BE <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> AF <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> ,则AC的长为  

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

【分析】利用垂直平分线的性质以及矩形的性质即可证明△AOF≌△COE,进而得AFCE <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> ,再利用勾股定理求出ABAC的长.

【解答】解:∵EFAC的垂直平分线,

AOCO

四边形ABCD是矩形,

ADBC

∴∠OAF=∠OCE

在△AOF和△COE中,

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

∴△AOF≌△COEASA),

AFCE <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

EFAC的垂直平分线,

AFCE <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

又∵BE <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

BCBE+EC <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> 8

Rt△ABE中,

AB <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> 6

Rt△ABC中,

AC <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> 10

故答案为:10

【点评】本题考查矩形的性质、线段垂直平分线的性质,解题关键是利用全等三角形以及勾股定理进行推理运算.

【变式2-3】(苏州期中)如图,在矩形ABCD中,AB3AD6EAD上一点,AE1PBC上一动点,连接AP,取AP的中点F,连接EF,当线段EF取得最小值时,线段PD的长度是  

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

【分析】过点PPMFEADM,则FE为△APM的中位线,PM2EF,当PMAD时,PM最短,EF最短,在Rt△PMD中可求得PD的长度.

【解答】解:过点PPMFEADM,如图,

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

FAP的中点,PMFE

FE为△APM的中位线,

AM2AE2PM2EF

EF取最小值时,即PM最短,

PMAD时,PM最短,

此时PMAB3

MDADAM4

Rt△PMD中,PD <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

当线段EF取得最小值时,线段PD的长度是5

故答案为:5

【点评】本题考查了矩形的性质,垂线段的性质和三角形中位线定理,构造三角形中位线,利用垂线段最短是解决本题的关键.

【题型3矩形的性质综合】

【例3】(余杭区月考)已知:如图,在矩形ABCD中,EBC上一点,且AEADDFAE于点F

1)求证:CEFE

2)若FD5CE1,求矩形的面积.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

【分析】(1)连接DE,利用矩形的性质,则可证得Rt△ABE≌Rt△DFA,进一步可证得Rt△DFE≌Rt△DCE,则可证得结论;

2)设ADx,则AFx﹣1,在△AFD中,利用勾股定理,可求得AD,可求得矩形ABCD的面积.

【解答】解:(1)连结DE,如图,

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

四边形ABCD是矩形,

ADBC

∴∠DAF=∠AEB

DFAE

∴∠AFD=∠B90°

在△ABE和△DFA中,

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

ABE≌△DFAAAS),

ABCDDF

Rt△DFERt△DCE中,

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

Rt△DFE≌Rt△DCEHL).

CEFE

2)∵△DEF≌△DEC

FECE1DCDF5

ADx

AFAEEFAD﹣1x﹣1

Rt△AFD中,由勾股定理得:AF2+DF2AD2

x﹣12+52x2

x13

AD13

S矩形ABCDADDC65

【点评】本题主要考查矩形的性质,证得三角形全等是解题的关键.

【变式3-1】(渝中区校级期中)如图,在矩形ABCD中,对角线ACBD交于点OAE平分∠BAD,交BC于点E,交BD于点F.已知∠CAE15°AB2

1)求矩形ABCD的面积;

2)求证:OEFE

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

【分析】(1)由矩形的性质可得AOBO,∠BAD=∠ABC90°,结合AE平分∠BAD,可求得∠BAO60°,则可判定△ABO是等边三角形,则由AB2,可得AC的长,然后由勾股定理求得BC的长,最后由矩形的面积公式计算即可;

2)先判定△ABE为等腰直角三角形,则可得BEAB,由等腰三角形的性质及三角形的外角性质可得∠OFE=∠BOE,然后由等腰三角形的判定可得结论.

【解答】解:(1)∵四边形ABCD是矩形,

AOBO,∠BAD=∠ABC90°

AE平分∠BAD

∴∠BAE <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> BAD45°

∵∠CAE15°

∴∠BAO=∠BAE+∠CAE60°

∴△ABO是等边三角形,

AB2

AC2AB4

Rt△ABC中,∠ABC90°AB2AC4

BC <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> 2 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

矩形ABCD的面积为:AB×BC4 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

2)证明:∵△ABO是等边三角形,

BOAB,∠ABO60°

∵∠BAE45°,∠ABC90°

∴△ABE为等腰直角三角形,

BEAB

BOBE,∠EBO=∠ABC﹣∠ABO30°

∴∠BOE <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> 180°﹣∠EBO)=75°

∴∠OFE=∠OBE+∠BEF75°

∴∠OFE=∠BOE

OEFE

【点评】本题考查了矩形的性质、等边三角形的判定与性质、等腰三角形的判定与性质及三角形的外角性质等知识点,熟练掌握相关性质及定理是解题的关键.

【变式3-2】(天心区期末)如图所示,在矩形ABCD中,EF分别是边ABCD上的点,AECF,连接EFBFEF与对角线AC交于点O,且BEBF,∠BEF2∠BAC

1)求证:OEOF

2)若AC6 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> ,求AB的长.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

【分析】(1)利用矩形的性质得出∠CAE=∠ACF,∠CFO=∠AEO,进而求出△AOE≌△COFAAS),得出答案即可;

2)首先求出∠BAC30°,进而得出∠BEF2∠OBE,利用勾股定理求出AB即可.

【解答】(1)证明:∵四边形ABCD是矩形,

ABCD

∴∠CAE=∠ACF,∠CFO=∠AEO

在△AOE和△COF中, <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

∴△AOE≌△COFAAS),

OEOF

2)解:连接OB,如图所示:

BFBEOEOF

BOEF

由(1)知,△AOE≌△COF

OAOC

四边形ABCD是矩形,

∴∠ABC90°

BO <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> ACOA

∴∠BAC=∠OBA

又∠BEF2∠BAC

∴∠BEF2∠OBE

Rt△OBE中,∠BEO+∠OBE90°

∴∠BAC30°

BC <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> AC3 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

AB <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> 9

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

【点评】此题主要考查了矩形的性质以及勾股定理和全等三角形的判定与性质等知识,得出△AOE≌△COF是解题关键.

【变式3-3】(越秀区校级期中)如图,矩形ABCD中,AB2 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> BC3,点E射线BC上一动点,△ABE关于AE的轴对称图形为△FAE

1)当点F在对角线AC上时,求FC的长;

2)当△FCE是直角三角形时,求BE的长.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

【分析】(1)利用矩形的性质和勾股定理求出AC,根据对称图形的性质,得出AFAB,再根据线段的有关计算求出FC

2)①当∠CFE是直角时,利用三角形面积公式和△ABC、△ABE、△AEC面积之间的关系即可;②当∠FCE是直角时,利用勾股定理即可求出;③当EBC延长线上时,此时∠CEF是直角,由BEABEF即可求得;④当EBC延长线上,∠ECF90°时,先求出CF3 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> ,再有勾股定理求出BE

【解答】解:(1)如图所示:

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

AB2 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> BC3

AC <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

∵△ABE关于AE的轴对称图形为△FAE

AFAB2 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

FCACAF <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> 2 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

2)当△FCE是直角三角形时,

当∠CFE是直角时,如(1)图所示:

由题意可知点F在对角线AC上,且EFAC

BEx,则EFx

SABC <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> 3×2 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> 3 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

SABE <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> 2 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> x <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> x

SACE <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> x

3 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> x <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> x

解得:x2 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> 4

BE2 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> 4

当∠FCE是直角时,如图所示:

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

∵△ABE关于AE的轴对称图形为△FAE

ABAFBEEF

Rt△ADF中,AD3AF2 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

DF <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

CFDCCE2 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

BEx,则EFxCE3﹣x

Rt△ADF中,

EF2CE2+CF2

x2=(3﹣x2 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

解得:x2

BEEF2

EBC延长线上时,此时∠CEF是直角,如图所示:

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

由题意得:BEABEF2 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

EBC延长线上,∠ECF90°时,如图所示:

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

Rt△ADF中,

DF <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

CF3 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

BEt,则EFtCEt﹣3

Rt△ECF中,

CF2+CE2EF2

即(3 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> 2+t﹣32t2

解得:t6

BE6

【点评】本题考查矩形性质、勾股定理、三角形面积和图形对称等知识,对知识的应用是解题的关键.

Shape4 知识点3 直角三角形斜边中线】

在直角三角形中,斜边上的中线等于斜边的一半.

【题型4直角三角形斜边中线】

【例4】(海淀区校级期中)如图,在Rt△ABC中,∠ACB90°AC6CD为中线,延长CB至点E,使BEBC,连接DEFDE的中点,连接BF,若BF3,则BC的长为(  )

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

A6 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> B3 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> C8 D6

【分析】由BEBC知道点BCE的中点,而点FDE的中点,根据中位线定理可以求得CD;在Rt△ABC中,根据直角三角形斜边上的中线等于斜边的一半,可求得斜边AB的长;根据勾股定理求得BC的长.

【解答】解:∵BEBC

BCE的中点,

FDE的中点,

BF为△CDE的中位线,

CD2BF2×36

Rt△ABC中,

∵∠ACB90°CD为中线,

CDADBD6

ABBD+AD6+612

Rt△ABC中,

AB2BC2+AC2AC6AB12

BC <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> 6 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

故选:A

【点评】本题考查了中位线定理,直角三角形斜边中线定理,勾股定理,其中,中位线定理是解题的突破口.

【变式4-1】(海淀区校级月考)如图,四边形ABCD中,∠BAD=∠BCD90°MN分别为对角线BDAC的中点,连接MN,判定MNAC的位置关系并证明.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

【分析】连接AMCM,根据直角三角形斜边上中线的性质得出AM <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> CM <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> BD,求出AMCM,再根据等腰三角形的性质得出即可.

【解答】解:MNAC

证明:连接AMCM

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

∵∠BAD=∠BCD90°MBD的中点,

AM <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> CM <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> BD

AMCM

NAC的中点,

MNAC

【点评】本题考查了等腰三角形的性质和判定,直角三角形斜边上的中线性质等知识点,注意:①直角三角形斜边上的中线等于斜边的一半,②等腰三角形底边上的中线垂直于底边.

【变式4-2】(东湖区期中)如图,在△ABC中,BDAC于点DCEAB于点E,点MN分别是BCDE的中点.

1)求证:MNDE

2)若∠A60°,连接EMDM,判断△EDM的形状,并说明理由.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

【分析】(1)根据直角三角形斜边上的中线等于斜边的一半可得MDME <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> BC,再根据等腰三角形三线合一的性质证明即可;

2)根据等腰三角形两底角相等求出∠BME+∠CMD,然后求出∠DME60°,再根据等边三角形的判定方法解答.

【解答】(1)证明:连接MEMD

BDACDCEABE,点MBC的中点,

MDME <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> BC

NDE的中点,

MNDE

2)解:∵MDMEBMCM

∴∠BME+∠CMD180°﹣2∠ABC+180°﹣2∠ACB360°﹣2(∠ABC+∠ACB),

∵∠A60°

∴∠ABC+∠ACB180°﹣60°120°

∴∠BME+∠CMD360°﹣2×120°120°

∴∠DME60°

∴△EDM是等边三角形.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形的性质,等边三角形的判定,熟记性质是解题的关键,难点在于(2)求出∠DME60°

【变式4-3】(邛崃市期中)如图,△ABC中,CDBE分别是ABAC边上的高,MN分别是线段BCDE的中点.

1)求证:MNDE

2)连接DMME,猜想∠A与∠DME之间的关系,并写出推理过程.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

【分析】(1)连接DMME,根据直角三角形斜边上的中线等于斜边的一半可得DM <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> BCME <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> BC,从而得到DMME,再根据等腰三角形三线合一的性质证明;

2)根据三角形的内角和定理可得∠ABC+∠ACB180°﹣∠A,再根据等腰三角形两底角相等表示出∠BMD+∠CME,然后根据平角等于180°表示出∠DME即可.

【解答】(1)证明:连接DMME

CDBE分别是ABAC边上的高,

∴∠BDC90°,∠BEC90°

M是线段BC的中点,

DM <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> BCEM <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> BC

DMEM

N是线段DE的中点,

MNDE

2)解:∠DME180°﹣2∠A

证明:∠ABC+∠ACB180°﹣∠A

DMMEBMMC

∴∠BMD+∠CME=(180°﹣2∠ABC+180°﹣2∠ACB

360°﹣2(∠ABC+∠ACB

360°﹣2180°﹣∠A

2∠A

∴∠DME180°﹣2∠A

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形两底角相等的性质,三角形的内角和定理,整体思想的利用是解题的关键.

Shape5 知识点4 矩形的判定方法】

矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;
对角线相等的平行四边形是矩形(或“对角线互相平分且相等的四边形是矩形”);

【题型5判定矩形成立的条件】

【例5】(阳谷县期末)在四边形ABCD中,ACBD交于点O.在下列各组条件中,不能判定四边形ABCD为矩形的是(  )

A.∠A=∠C,∠B+∠C180°ACBD

BAOCOBODO,∠A90°

C.∠A=∠B90°ACBD

DABCDADBCACBD

【分析】由∠B+∠C180°,得出ABDC,再证出ADBC,得出四边形ABCD是平行四边形,由对角线互相垂直得出四边形ABCD是菱形,A符合题意;

AOCOBODO,得出四边形ABCD是平行四边形,由∠A90°即可得出B不符合题意;

由∠A+∠B180°,得出ADBC,由HL证明Rt△ABC≌Rt△BAD,得出BCAD,证出四边形ABCD是平行四边形,由∠A90°即可得出C不符合题意.

ABCDADBC,得出四边形ABCD是平行四边形,再由对角线相等即可得出D不符合题意;

【解答】解:∵∠B+∠C180°

ABDC

∵∠A=∠C

∴∠B+∠A180°

ADBC

四边形ABCD是平行四边形,

又∵ACBD

四边形ABCD是菱形,

A不符合题意;

AOCOBODO

四边形ABCD是平行四边形,

又∵∠A90°

四边形ABCD是矩形,

B不符合题意;

∵∠A=∠B90°

∴∠A+∠B180°

ADBC,如图所示:

Rt△ABCRt△BAD中,

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

Rt△ABC≌Rt△BADHL),

BCAD

四边形ABCD是平行四边形,

又∵∠A90°

四边形ABCD是矩形,

C不符合题意;

ABCDADBC

四边形ABCD是平行四边形,

又∵ACBD

四边形ABCD是矩形,

D符合题意;

故选:A

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

【点评】本题考查了矩形的判定、平行四边形的判定、菱形的判定、全等三角形的判定与性质;熟练掌握矩形的判定方法是解决问题的关键.

【变式5-1】(招远市期中)如图,下列条件不能判定四边形ABCD是矩形的是(  )

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

A.∠DAB=∠ABC=∠BCD90° BABCDABCDABAD

CAOBOCODO DAOBOCODO

【分析】矩形的判定定理有:

1)有一个角是直角的平行四边形是矩形;

2)有三个角是直角的四边形是矩形;

3)对角线互相平分且相等的四边形是矩形.据此判断.

【解答】解;A、∠DAB=∠ABC=∠BCD90°根据有三个角是直角的四边形是矩形可判定为矩形,故此选项错误;

BABCDABCD,可以判定为平行四边形,又有ABAD,可判定为矩形,故此选项错误;

CAOBOCODO,不可以判定为平行四边形,所以不可判定为矩形,故此选项正确;

DAOBOCODO,可以得到对角线互相平分且相等,据此可以判定矩形,故此选项错误.

故选:C

【点评】本题考查的是矩形的判定以及矩形的定理,难度简单.

【变式5-2】(涿鹿县期中)在四边形ABCD中,对角线ACBD交于点OACBD互相平分,若添加一个条件使得四边形ABCD是矩形,则这个条件可以是  (填写一个即可).

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

【分析】因为在四边形ABCD中,对角线ACBD互相平分,所以四边形ABCD是平行四边形,根据矩形的判定条件,可得在不添加任何辅助线的前提下,要使四边形ABCD成为矩形,还需添加一个条件,这个条件可以是一个角是直角或者对角线相等,从而得出答案.

【解答】解:∵对角线ACBD互相平分,

四边形ABCD是平行四边形,

要使四边形ABCD成为矩形,

需添加一个条件是:ACBD或有个内角等于90度.

故答案为:ACBD或有个内角等于90度.

【点评】此题主要考查了矩形的判定定理:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.

【变式5-3】(房山区期末)在四边形ABCD中,有以下四个条件:

ABCD;②ADBC;③ACBD;④∠ADC=∠ABC

从中选取三个条件,可以判定四边形ABCD为矩形.则可以选择的条件序号是  

【分析】根据全等三角形的判定和性质以及矩形的判定定理即可得到结论.

【解答】解:当具备①③④这三个条件,能得到四边形ABCD是矩形.理由如下:

ABCD

∴∠BAC=∠DCA

∵∠ABC=∠ADCACCA

∴△ABC≌△CDAAAS),

∴∠ACB=∠DCA

ADBC

四边形ABCD是平行四边形,

ACBD

四边形ABCD是矩形;

故答案为:①③④.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

【点评】本题主要考查的是矩形的判定,全等三角形的判定和性质,掌握矩形的判定定理是解题的关键.

【题型6矩形的判定证明(根据直角判定)】

【例6】(龙口市期中)如图,已知△ABC中,ABACAD是角平分线,FBA延长线上的一点,AE平分∠FACDEBAAEE.求证:四边形ADCE是矩形.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

【分析】首先利用外角性质得出∠B=∠ACB=∠FAE=∠EAC,进而得到AECD,即可求出四边形AEDB是平行四边形,再利用平行四边形的性质求出四边形ADCE是平行四边形,即可求出四边形ADCE是矩形.

【解答】证明:∵ABACAD是角平分线,

∴∠B=∠ACBADBC

AE平分∠FAC

∴∠FAE=∠EAC

∵∠B+∠ACB=∠FAE+∠EAC

∴∠B=∠ACB=∠FAE=∠EAC

AECD

又∵DEAB

四边形AEDB是平行四边形,

AEBDAEBD

ADBCABAC

BDDC

AEDCAEDC

四边形ADCE是平行四边形,

又∵∠ADC90°

四边形ADCE是矩形.

【点评】此题主要考查了平行四边形的判定与性质以及矩形的判定,灵活利用平行四边形的判定得出四边形AEDB是平行四边形是解题关键.

【变式6-1】(南京月考)如图,在△ABC中,点DBC的中点,点EAD边的中点,过点AAFCBCE的延长线于点F,连接BF

1)求证:AFBD

2)当△ABC满足什么条件时,四边形BDAF为矩形,并说明理由.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

【分析】(1)根据全等三角形的判定和性质和平行线的性质即可得到结论;

2)由等腰三角形的性质得到∠ADB90°,由(1)知四边形BDAF为平行四边形,则▱BDAF是矩形.

【解答】(1)证明:∵点DBC的中点,

BDCD

EAD边的中点,

AEDE

AFCD

∴∠AFE=∠DCE

∵∠AEF=∠DEC

∴△AEF≌△DECAAS),

AFCD

AFBD

2)解:△ABC满足:ABAC时,四边形BDAF为矩形,

理由如下:

ABACBDCD

∴∠ADB90°

由(1)知四边形BDAF为平行四边形,

∴▱BDAF为矩形.

【点评】本题考查了矩形的判定,平行四边形的判定和性质,等腰三角形的性质,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键.

【变式6-2】(连云港模拟)如图,在平行四边形ABCD中,对角线ACBD相交于点O,点EF分别为OBOD的中点,延长AEG,使EGAE,连接CG

1)求证:△ABE≌△CDF

2)当线段AB与线段AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

【分析】(1)由平行四边形的性质得出ABCDABCDOBODOAOC,由平行线的性质得出∠ABE=∠CDF,证出BEDF,由SAS证明△ABE≌△CDF即可;

2)证出ABOA,由等腰三角形的性质得出AGOB,∠OEG90°,同理:CFOD,得出EGCF,由三角形中位线定理得出OECGEFCG,得出四边形EGCF是平行四边形,即可得出结论.

【解答】证明:(1)∵四边形ABCD是平行四边形,

ABCDABCDOBODOAOC

∴∠ABE=∠CDF

EF分别为OBOD的中点,

BE <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> OBDF <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> OD

BEDF

在△ABE和△CDF中,

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

∴△ABE≌△CDFSAS);

2)解:当AC2AB时,四边形EGCF是矩形;理由如下:

AC2OAAC2AB

ABOA

EOB的中点,

AGOB

∴∠OEG90°

同理:CFOD

AGCF

EGCF

EGAEOAOC

OE是△ACG的中位线,

OECG

EFCG

四边形EGCF是平行四边形,

∵∠OEG90°

四边形EGCF是矩形.

【点评】本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.

【变式6-3】(鄂州期中)如图,△ABC中,点OAC边上的一个动点,过点O作直线MNBC,交∠ACB的平分线于点E,交∠ACB的外角平分线于点F

1)判断OEOF的大小关系?并说明理由;

2)当点O运动到何处时,四边形AECF是矩形?并说出你的理由;

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

【分析】(1)利用平行线的性质得:∠OEC=∠ECB,根据角平分线的定义可知:∠ACE=∠ECB,由等量代换和等角对等边得:OEOC,同理:OCOF,可得结论;

2)先根据对角线互相平分证明四边形AECF是平行四边形,再由角平分线可得:∠ECF90°,利用有一个角是直角的平行四边形可得结论;

【解答】解:(1OEOF,理由如下:

MNBC

∴∠OEC=∠ECB

CE平分∠ACB

∴∠ACE=∠ECB

∴∠OEC=∠ACE

OEOC

同理可得:OCOF

OEOF

2)当OAC中点时,四边形AECF是矩形;

理由如下:

OAOCOEOF(已证),

四边形AECF是平行四边形,

EC平分∠ACBCF平分∠ACG

∴∠ACE <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> ACB,∠ACF <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> ACG

∴∠ACE+∠ACF <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> (∠ACB+∠ACG <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> 180°90°

即∠ECF90°

四边形AECF是矩形.

【点评】本题主要考查了平行四边形的判定、矩形的判定以及正方形的判定、平行线的性质、角平分线的定义,熟练掌握并区分平行四边形、矩形、正方形的判定是解题关键.

【题型7矩形的判定证明(根据对角线判定)】

【例7】(静海区月考)如图,将▱ABCD的边AB延长至点E,使ABBE,连接DEECBDDEBC于点O

1)求证△ABD≌△BEC

2)若∠BOD2∠A,求证四边形BECD是矩形.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

【分析】(1)根据平行四边形的判定与性质得到四边形BECD为平行四边形,然后由SSS推出两三角形全等即可;

2)欲证明四边形BECD是矩形,只需推知BCED

【解答】证明:(1)在平行四边形ABCD中,ADBCABCDABCD,则BECD

又∵ABBE

BEDC

四边形BECD为平行四边形,

BDEC

在△ABD与△BEC中,

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

∴△ABD≌△BECSSS);

2)由(1)知,四边形BECD为平行四边形,则ODOEOCOB

四边形ABCD为平行四边形,

∴∠A=∠BCD

即∠A=∠OCD

又∵∠BOD2∠A,∠BOD=∠OCD+∠ODC

∴∠OCD=∠ODC

OCOD

OC+OBOD+OE

BCED

平行四边形BECD为矩形.

【点评】本题考查了平行四边形的性质和判定,矩形的判定,平行线的性质,全等三角形的性质和判定,三角形的外角性质等知识点的综合运用,难度较大.

【变式7-1】(丹东期末)如图,AD是△ABC的中线,AEBC,且AE <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> BC,连接DECE

1)求证:ABDE

2)当△ABC满足什么条件时,四边形ADCE是矩形?并说明理由.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

【分析】(1)根据三角形中位线定理和平行四边形的判定和性质解答即可;

2)根据矩形的判定解答即可.

【解答】证明:(1)∵AD是△ABC的中线,

BDCD <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> BC

AE <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> BC

AEBD

AEBC

四边形ABDE是平行四边形,

ABDE

2)当△ABC满足ABAC时,四边形ADCE是矩形,

AE <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> BCBDCD <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> BC

AECD

AEBC

四边形ADCE是平行四边形,

ABDE

ABAC时,ACDE

四边形ADCE是矩形.

【点评】此题考查了平行四边形的判定与性质、等腰三角形的性质以及矩形的判定.此题难度适中,注意掌握数形结合思想的应用.

【变式7-2】(兰州期末)如图,ACBD相交于点O,且OACBD的中点,点E在四边形ABCD外,且∠AEC=∠BED90°,求证:四边形ABCD是矩形.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

【分析】连接EO,首先根据OBDAC的中点,得出四边形ABCD是平行四边形,在Rt△AECEO <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> AC,在Rt△EBD中,EO <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> BD,得到ACBD,可证出结论.

【解答】证明:连接EO,如图所示:

OACBD的中点,

AOCOBODO

四边形ABCD是平行四边形,

Rt△EBD中,

OBD中点,

EO <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> BD

Rt△AEC中,∵OAC中点,

EO <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> AC

ACBD

又∵四边形ABCD是平行四边形,

平行四边形ABCD是矩形.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

【点评】此题主要考查了矩形的判定、平行四边形的判定、直角三角形斜边上的中线性质,关键是掌握直角三角形斜边上的中线等于斜边的一半.

【变式7-3】(镇江期中)如图,在△ABC中,OAC上的任意一点(不与点AC重合),过点O平行于BC的直线l分别与∠BCA、∠DCA的平分线交于点EF

1OEOF相等吗?证明你的结论.

2)试确定点O的位置,使四边形AECF是矩形,并加以证明.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

【分析】(1)根据平行线性质和角平分线定义推出∠OEC=∠OCE,∠OFC=∠OCF,根据等腰三角形的判定推出OEOCOFOC即可;

2)根据平行四边形的判定得出平行四边形AECF,根据对角线相等的平行四边形是矩形推出即可;

【解答】(1)解:相等;理由是:∵直线lBC

∴∠OEC=∠ECB

CE平分∠ACB

∴∠OCE=∠BCE

∴∠OEC=∠OCE

OEOC

同理OFOC

OEOF


2)解:OAC的中点上时,四边形AECF是矩形,

理由是:∵OAOCOEOF

四边形AECF是平行四边形,

OEOFOCOA

ACEF

平行四边形AECF是矩形.

【点评】本题综合考查了平行四边形的性质和判定,矩形的判定,平行线的性质,角平分线定义等知识点的应用,题型较好,综合性比较强,难度也适中.

【题型8矩形的判定与性质综合】

【例8】(崇川区校级月考)如图,在四边形ABCD中,ACBD相交于点OADBC,∠ADC=∠ABCOAOB

1)如图1,求证:四边形ABCD为矩形;

2)如图2PAD边上任意一点,PEBDPFACEF分别是垂足,若AD12AB5,求PE+PF的值.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

【分析】(1)先证四边形ABCD是平行四边形,得出OAOC <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> ACOBOD <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> BD,再证出ACBD,即可得出结论;

2)由勾股定理可求ACBD13,由面积法可求解.

【解答】证明:(1)∵ADBC

∴∠ABC+∠BAD180°,∠ADC+∠BCD180°

∵∠ABC=∠ADC

∴∠BAD=∠BCD

四边形ABCD是平行四边形,

OAOC <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> ACOBOD <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> BD

OAOB

ACBD

四边形ABCD是矩形;

2)如图,连接OP

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

AD12AB5

BD <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> 13

BOODAOCO <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

SAOD <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> S矩形ABCD <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> 12×515

SAOP+SPOD15

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> FP <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> EP15

PE+PF <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

【点评】本题考查了矩形的判定与性质,平行四边形的判定与性质,勾股定理等知识,解题的关键是熟练掌握矩形的判定与性质,属于中考常考题型.

【变式8-1】(惠民县期末)如图,过△ABCAC的中点O,作OEAC,交AB于点E,过点AADBC,与BO的延长线交于点D,连接CDCE,若CE平分∠ACBCEBO于点F

1)求证:

OCBC

四边形ABCD是矩形;

2)若BC3,求DE的长.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

【分析】(1)①根据角平分线定义得到∠OCE=∠BCE,由垂直的定义得到∠CFO=∠CFB90°,根据全等三角形的性质即可得到结论;

根据平行线的性质得到∠DAO=∠BCO,∠ADO=∠CBO,根据全等三角形的性质得到ADBC,推出四边形ABCD是平行四边形,根据全等三角形的性质得到∠EBC=∠EOC90°,于是得到四边形ABCD是矩形;

2)由矩形的性质得到ADBC3,∠DAB90°ACBD,得到△OBC是等边三角形,求得∠OCB60°,根据勾股定理即可得到结论.

【解答】(1)证明:①∵CE平分∠ACB

∴∠OCE=∠BCE

BOCE

∴∠CFO=∠CFB90°

在△OCF与△BCF中,

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

∴△OCF≌△BCFASA),

OCBC

②∵OAC的中点,

OAOC

ADBC

∴∠DAO=∠BCO,∠ADO=∠CBO

在△OAD与△OCB中,

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

∴△OAD≌△OCBASA),

ADBC

ADBC

四边形ABCD是平行四边形,

OEAC

∴∠EOC90°

在△OCE与△BCE中,

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

∴△OCE≌△BCESAS),

∴∠EBC=∠EOC90°

四边形ABCD是矩形;

2)解:∵四边形ABCD是矩形,

ADBC3,∠DAB90°ACBD

OBOC

OCBC

OCOBBC

∴△OBC是等边三角形,

∴∠OCB60°

∴∠ECB <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> OCB30°

∵∠EBC90°

EB <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> EC

BE2+BC2EC2BC3

EB <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> EC2 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

OEACOAOC

ECEA2 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

Rt△ADE中,∠DAB90°

DE <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

【点评】本题考查了矩形的判定和性质,全等三角形的判定和性质,勾股定理,等边三角形的判定和性质,正确的识别图形是解题的关键.

【变式8-2】(滨江区期末)矩形ABCD中,AB3BC4.点EF在对角线AC上,点MN分别在边ADBC上.

1)如图1,若AECF1MN分别是ADBC的中点.求证:四边形EMFN为矩形.

2)如图2,若AECF0.5AMCNx0x2),且四边形EMFN为矩形,求x的值.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

【分析】(1)连接MN,由勾股定理求出AC5,证出四边形ABNM是矩形,得MNAB3,证△AME≌△CNFSAS),得出EMFN,∠AEM=∠CFN,证EMFN,得四边形EMFN是平行四边形,求出MNEF,即可得出结论;

2)连接MN,作MHBCH,则MHAB3BHAMx,得HNBCBHCN4﹣2x,由矩形的性质得出MNEFACAECF4,在Rt△MHN中,由勾股定理得出方程,解方程即可.

【解答】(1)证明:连接MN,如图1所示:

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

四边形ABCD是矩形,

ADBCADBC,∠B90°

∴∠EAM=∠FCNAC <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a> 5

MN分别是ADBC的中点,

AMDMBNCNAMBN

四边形ABNM是平行四边形,

又∵∠B90°

四边形ABNM是矩形,

MNAB3

在△AME和△CNF中, <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

∴△AME≌△CNFSAS),

EMFN,∠AEM=∠CFN

∴∠MEF=∠NFE

EMFN

四边形EMFN是平行四边形,

又∵AECF1

EFACAECF3

MNEF

四边形EMFN为矩形.

2)解:连接MN,作MHBCH,如图2所示:

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

则四边形ABHM是矩形,

MHAB3BHAMx

HNBCBHCN4﹣2x

四边形EMFN为矩形,AECF0.5

MNEFACAECF4

Rt△MHN中,由勾股定理得:32+4﹣2x242

解得:x <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

0x2

x2 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

【点评】本题考查了矩形的判定与性质、平行四边形的判定与性质、全等三角形的判定与性质、平行线的判定、勾股定理等知识;熟练掌握矩形的判定与性质和勾股定理是解题的关键.

【变式8-3】(定远县期末)如图1,已知ADBCABCD,∠B=∠C

1)求证:四边形ABCD为矩形;

2MAD的中点,在AB上取一点N,使∠BNC2∠DCM

如图2,若NAB中点,BN2,求CN的长;

如图2,若CM3CN4,求BC的长.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

【分析】(1)只要证明∠B90°即可.

2)如图2中,延长CMBA交于点E,只要证明△AME≌△DMC,得到AECD4,再证明ENCN即可解决问题.

3)如图3中,延长CMBA交于点E.设BNx,则BC2CN2BN2CE2EB2,由此列出方程即可解决问题.

【解答】(1)证明:如图1中,

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

ADBCABCD

四边形ABCD是平行四边形,

ABCD

∴∠B+∠C180°

∵∠B=∠C

∴∠B=∠C90°

四边形ABCD是矩形.


2)①如图2中,延长CMBA交于点E

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

ANBN2

ABCD4

AEDC

∴∠E=∠MCD

在△AEM和△DCM中,

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

∴△AME≌△DMC

AECD4

∵∠BNC2∠DCM=∠NCD

∴∠NCE=∠ECD=∠E

CNENAE+AN4+26


如图3中,延长CMBA交于点E

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

由①可知,△EAM≌△CDMENCN

EMCM3ENCN4,设BNx,则BC2CN2BN2CE2EB2

42x262x+42

x <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

BC <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/264/" title="难点" class="c1" target="_blank">难点</a> <a href="/tags/282/" title="专题" class="c1" target="_blank">专题</a> <a href="/tags/900/" title="矩形" class="c1" target="_blank">矩形</a>

【点评】本题考查矩形的判定和性质、全等三角形的判定和性质等知识,解题的关键是添加常用辅助线.构造全等三角形,属于中考考查图形.


1