当前位置:首页 > 九年级 > 数学试卷

【331308】26.1.2 反比例函数的图象和性质

时间:2025-02-02 18:17:32 作者: 字数:4591字
简介:







 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>









 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>








年级

九年级

课题

26.1.2 反比例函数的图象和性质

课型

新授

教学媒体

多媒体

教学

目标


会用描点法画反比例函数的图象

结合图象分析并掌握反比例函数的性质

体会函数的三种表示方法,领会数形结合的思想方法

重点

难点

理解并掌握反比例函数的图象和性质

理解并掌握反比例函数的图象和性质

教学

准备

教师准备


是否需要课件


学生准备


教学过程设计


课堂引入


提出问题:

1.一次函数ykxbkb是常数,k≠0)的图象是什么?其性质有哪些?正比例函数ykxk≠0)呢?

2.画函数图象的方法是什么?其一般步骤有哪些?应注意什么?

3.反比例函数的图象是什么样呢?


例习题分析


2.见教材P48,用描点法画图,注意强调:

1)列表取值时,x≠0,因为x0函数无意义,为了使描出的点具有代表性,可以0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y

2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确

3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线

4)由于x≠0k≠0,所以y≠0,函数图象永远不会与x轴、y轴相交,只是无限靠近两坐标轴

1.(补充)已知反比例函数 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 的图象在第二、四象限,求m值,并指出在每个象限内yx的变化情况?

分析:此题要考虑两个方面,一是反比例函数的定义,即 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>k≠0)自变量x的指数是-1,二是根据反比例函数的性质:当图象位于第二、四象限时,k0,则m10,不要忽视这个条件

略解: <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 是反比例函数

m23=-1,且m1≠0

图象在第二、四象限m10

解得 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>m1  <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>

 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>
2.(补充)如图,过反比例函数 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>x0)的图象上任意两点AB分别作x轴的垂线,垂足分别为CD,连接OAOB,设
AOCBOD的面积分别是S1S2,比较它们的大小,可得(


AS1S2 BS1S2

CS1S2 D)大小关系不能确定

分析:从反比例函数 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>k≠0)的图象上任一点Pxy)向x轴、y轴作垂线段,与x轴、y轴所围成的矩形面积 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> ,由此可得S1S2  <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> ,故选B


随堂练习

1.已知反比例函数 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> ,分别根据下列条件求出字母k的取值范围

1)函数图象位于第一、三象限

2)在第二象限内,yx的增大而增大

2.函数y=-axa <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>a≠0)在同一坐标系中的图象可能是(


 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>  <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>  <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>  <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>

3.在平面直角坐标系内,过反比例函数 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>k0)的图象上的一点分别作x轴、y轴的垂线段,与x轴、y轴所围成的矩形面积是6,则函数解析式为














课后练习

1.若函数 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 的图象交于第一、三象限,则m的取值范围是

2.反比例函数 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> ,当x=-2时,y ;当x<-2时;y的取值范围是

x>-2时;y的取值范围是

  1. 已知反比例函数 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> ,当 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 时,yx的增大而增大,

求函数解析式

答案:3 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/411/" title="反比例" class="c1" target="_blank">反比例</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>

留白:

(供教师个性化设计)

附:板书设计


教后反思:













授课时间:______________