……………○……………外……………○……………装……………○……………订……………○……………线……………○………………
学校:
姓名: 班级:
考号:
……………○……………内……………○……………装……………○……………订……………○……………线……………○………………
绝密★启用前
159206-重庆2023年高考物理真题
学校:___________姓名:___________班级:___________考号:___________
题号 |
一 |
二 |
三 |
四 |
总分 |
得分 |
|
|
|
|
|
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
一、单选题
1.矫正牙齿时,可用牵引线对牙施加力的作用。若某颗牙齿受到牵引线的两个作用力大小均为F,夹角为α(如图),则该牙所受两牵引力的合力大小为( )
A. B.
C. D.
2.某小组设计了一种呼吸监测方案:在人身上缠绕弹性金属线圈,观察人呼吸时处于匀强磁场中的线圈面积变化产生的电压,了解人的呼吸状况。如图所示,线圈P的匝数为N,磁场的磁感应强度大小为B,方向与线圈轴线的夹角为θ。若某次吸气时,在t时间内每匝线圈面积增加了S,则线圈P在该时间内的平均感应电动势为( )
A. B.
C. D.
3.真空中固定有两个点电荷,负电荷Q1位于坐标原点处,正电荷Q2位于x轴上,Q2的电荷量大小为Q1的8倍。若这两点电荷在x轴正半轴的x=x0处产生的合电场强度为0,则Q1、Q2相距( )
A. B. C. D.
4.密封于气缸中的理想气体,从状态 依次经过ab、bc和cd三个热力学过程达到状态d。若该气体的体积V随热力学温度T变化的V-T图像如图所示,则对应的气体压强p随T变化的p-T图像正确的是( )
A. B.
C. D.
5.某实验小组利用双缝干涉实验装置分别观察a、b两单色光的干涉条纹,发现在相同的条件下光屏上a光相邻两亮条纹的间距比b光的小。他们又将a、b光以相同的入射角由水斜射入空气,发现a光的折射角比b光的大,则( )
A.在空气中传播时,a光的波长比b光的大
B.在水中传播时,a光的速度比b光的大
C.在水中传播时,a光的频率比b光的小
D.由水射向空气时,a光的全反射临界角比b光的小
6.原子核 可以经过多次α和β衰变成为稳定的原子核 ,在该过程中,可能发生的β衰变是( )
A. B.
C. D.
7.如图所示,与水平面夹角为θ的绝缘斜面上固定有光滑U型金属导轨。质量为m、电阻不可忽略的导体杆MN沿导轨向下运动,以大小为v的速度进入方向垂直于导轨平面向下的匀强磁场区域,在磁场中运动一段时间t后,速度大小变为2v。运动过程中杆与导轨垂直并接触良好,导轨的电阻忽略不计,重力加速度为g。杆在磁场中运动的此段时间内( )
A.流过杆的感应电流方向从N到M
B.杆沿轨道下滑的距离为
C.流过杆感应电流的平均电功率等于重力的平均功率
D.杆所受安培力的冲量大小为
二、多选题
8.某实验小组测得在竖直方向飞行的无人机飞行高度y随时间t的变化曲线如图所示,E、F、M、N为曲线上的点,EF、MN段可视为两段直线,其方程分别为 和 。无人机及其载物的总质量为2kg,取竖直向上为正方向。则( )
A.EF段无人机的速度大小为4m/s
B.FM段无人机的货物处于失重状态
C.FN段无人机和装载物总动量变化量大小为4kg∙m/s
D.MN段无人机机械能守恒
9.一列简谐横波在介质中沿x轴传播,波速为2m/s,t=0时的波形图如图所示,P为该介质中的一质点。则( )
A.该波的波长为14m
B.该波的周期为8s
C.t=0时质点P的加速度方向沿y轴负方向
D.0~2 s内质点P运动的路程有可能小于0.1m
10.某卫星绕地心的运动视为匀速圆周运动,其周期为地球自转周期T的 ,运行的轨道与地球赤道不共面(如图)。 时刻,卫星恰好经过地球赤道上P点正上方。地球的质量为M,半径为R,引力常量为G。则( )
A.卫星距地面的高度为
B.卫星与位于P点处物体的向心加速度大小比值为 ππ
C.从 时刻到下一次卫星经过P点正上方时,卫星绕地心转过的角度为
D.每次经最短时间实现卫星距P点最近到最远的行程,卫星绕地心转过的角度比地球的多
三、实验题
11.某实验小组用单摆测量重力加速度。所用实验器材有摆球、长度可调的轻质摆线、刻度尺、50分度的游标卡尺、摄像装置等。
(1)用游标卡尺测量摆球直径d。当量爪并拢时,游标尺和主尺的零刻度线对齐。放置摆球后游标卡尺示数如图甲所示,则摆球的直径d为 mm。
(2)用摆线和摆球组成单摆,如图乙所示。当摆线长度l=990.1mm时,记录并分析单摆的振动视频,得到单摆的振动周期T=2.00 s,由此算得重力加速度g为 m/s2(保留3位有效数字)。
(3)改变摆线长度l,记录并分析单摆的振动视频,得到相应的振动周期。他们发现,分别用l和 作为摆长,这两种计算方法得到的重力加速度数值的差异大小Δg随摆线长度l的变化曲线如图所示。由图可知,该实验中,随着摆线长度l的增加,Δg的变化特点是 ,原因是 。
12.一兴趣小组拟研究某变压器的输入和输出电压之比,以及交流电频率对输出电压的影响。题图1为实验电路图,其中L1和L2为变压器的原、副线圈,S1和S2为开关,P为滑动变阻器Rp的滑片,R为电阻箱,E为正弦式交流电源(能输出电压峰值不变、频率可调的交流电)。
(1)闭合S1,用多用电表交流电压挡测量线圈L1两端的电压。滑片P向右滑动后,与滑动前相比,电表的示数 (选填 “变大”“不变”“ 变小”)。
(2)保持S2断开状态,调整E输出的交流电频率为50 Hz,滑动滑片P,用多用电表交流电压挡测得线圈L1两端的电压为2500 mV时,用示波器测得线圈L2两端电压u随时间t的变化曲线如图所示,则线圈L1两端与L2两端的电压比值为 (保留3位有效数字)。
(3)闭合S2,滑动P到某一位置并保持不变。分别在E输出的交流电频率为50 Hz、1000 Hz的条件下,改变R的阻值,用多用电表交流电压挡测量线圈L2两端的电压U,得到U-R关系曲线如图3所示。用一个阻值恒为20 Ω的负载R0替换电阻箱R,由图可知,当频率为1000 Hz时,R0两端的电压为 mV;当频率为50 Hz 时,为保持R0两端的电压不变,需要将R0与一个阻值为 Ω的电阻串联。(均保留3位有效数字)
四、解答题
13.机械臂广泛应用于机械装配。若某质量为m的工件(视为质点)被机械臂抓取后,在竖直平面内由静止开始斜向上做加速度大小为a的匀加速直线运动,运动方向与竖直方向夹角为θ,提升高度为h,如图所示。求:
(1)提升高度为h时,工件的速度大小;
(2)在此过程中,工件运动的时间及合力对工件做的功。
14.如图所示,桌面上固定有一半径为R的水平光滑圆轨道,M、N为轨道上的两点,且位于同一直径上,P为MN段的中点。在P点处有一加速器(大小可忽略),小球每次经过P点后,其速度大小都增加v0。质量为m的小球1从N处以初速度v0沿轨道逆时针运动,与静止在M处的小球2发生第一次弹性碰撞,碰后瞬间两球速度大小相等。忽略每次碰撞时间。求:
(1)球1第一次经过P点后瞬间向心力的大小;
(2)球2的质量;
(3)两球从第一次碰撞到第二次碰撞所用时间。
15.某同学设计了一种粒子加速器的理想模型。如图所示,xOy平面内,x轴下方充满垂直于纸面向外的匀强磁场,x轴上方被某边界分割成两部分,一部分充满匀强电场(电场强度与y轴负方向成α角),另一部分无电场,该边界与y轴交于M点,与x轴交于N点。只有经电场到达N点、与x轴正方向成α角斜向下运动的带电粒子才能进入磁场。从M点向电场内发射一个比荷为 的带电粒子A,其速度大小为v0、方向与电场方向垂直,仅在电场中运动时间T后进入磁场,且通过N点的速度大小为2v0。忽略边界效应,不计粒子重力。
(1)求角度α及M、N两点的电势差。
(2)在该边界上任意位置沿与电场垂直方向直接射入电场内的、比荷为 的带电粒子,只要速度大小适当,就能通过N点进入磁场,求N点横坐标及此边界方程。
(3)若粒子A第一次在磁场中运动时磁感应强度大小为B1,以后每次在磁场中运动时磁感应强度大小为上一次的一半,则粒子A从M点发射后,每次加速均能通过N点进入磁场。求磁感应强度大小B1及粒子A从发射到第n次通过N点的时间。
参考答案
一、单选题
1. B
根据平行四边形定则可知,该牙所受两牵引力的合力大小为 合 ,故选B。
2. A
根据法拉第电磁感应定律有 ,故选A。
3. B
依题意,两点电荷电性相反,且Q2的电荷量较大,根据题意,正电荷Q2位于x轴负半轴,设两点电荷相距L,根据点电荷场强公式可得 ,又 ,解得 ,故选B。
4. C
由V-T图像可知,理想气体ab过程做等压变化,bc过程做等温变化,cd过程做等容变化。根据理想气体状态方程,有 ,可知bc过程理想气体的体积增大,则压强减小。选C。
5. D
A.根据相邻两条亮条纹的间距计算公式 ,由此可知 ,故A错误;
B.根据折射定律 a、b光以相同的入射角由水斜射入空气,a光的折射角比b光的大,则 ,根据光在介质中的传播速度与折射率的关系 可得在水中传播时,a光的速度比b光的小,故B错误;
C.在水中传播时,a光的折射率比b光的大,所以a光的频率比b光的大,故C错误;
D.根据临界角与折射率的关系 ,可得在水中传播时,a光的折射率比b光的大,a光的全反射临界角比b光的小,故D正确。
故选D。
6. A
原子核 衰变成为稳定的原子核 质量数减小了28,则经过了7次α衰变,中间生成的新核的质量数可能为231,227,223,219,215,211,则发生β衰变的原子核的质量数为上述各数,则BCD都不可能,根据核反应的质量数和电荷数守恒可知,选项A反应正确。故选A。
7. D
A.根据右手定则,判断知流过杆的感应电流方向从M到N,故A错误;
B.依题意,设杆切割磁感线的有效长度为 ,电阻为 。杆在磁场中运动的此段时间内,杆受到重力,轨道支持力及沿轨道向上的安培力作用,根据牛顿第二定律可得 安 , 安 , ,联立可得杆的加速度 ,可知,杆在磁场中运动的此段时间内做加速度逐渐减小的加速运动;若杆做匀加速直线运动,则杆运动的距离为 ,根据 图像围成的面积表示位移,可知杆在时间t内速度由 达到 ,杆真实运动的距离大于匀加速情况发生的距离,即大于 ,故B错误;
C.由于在磁场中运动的此段时间内,杆做加速度逐渐减小的加速运动,杆的动能增大。由动能定理可知,重力对杆所做的功大于杆克服安培力所做的功,根据 可得安培力的平均功率小于重力的平均功率,也即流过杆感应电流的平均电功率小于重力的平均功率,故C错误;
D.杆在磁场中运动的此段时间内,根据动量定理,可得 安 ,得杆所受安培力的冲量大小为 安 ,故D正确。故选D。
二、多选题
8. AB
A.根据EF段方程 ,可知EF段无人机的速度大小为 ,故A正确;
B.根据 图像的切线斜率表示无人机的速度,可知FM段无人机先向上做减速运动,后向下做加速运动,加速度方向一直向下,则无人机的货物处于失重状态,故B正确;
C.根据MN段方程 ,可知MN段无人机的速度为 ,则有 ,可知FN段无人机和装载物总动量变化量大小为12kg∙m/s,故C错误;
D.MN段无人机向下做匀速直线运动,动能不变,重力势能减少,无人机的机械能不守恒,故D错误。故选AB。
9. BD
A.由图可知 ,解得 ,A错误;
B.由 得 ,B正确;
C.简谐运动的加速度总指向平衡位置,P点位于y轴负半轴,加速度方向沿y轴正方向,C错误;
D.P点位于y轴的负半轴,经过 ,若波向x轴负方向传播,P向远离平衡位置方向振动,在0~2 s内质点P运动的路程有可能小于0.1m,D正确;故选BD。
10. BCD
A.由题意,知卫星绕地球运转的周期为 ,设卫星的质量为 ,卫星距地面的高度为 ,有 ,联立可求得 ,故A错误;
B.卫星的向心加速度大小 ,位于P点处物体的向心加速度大小 ,可得 ππ ,故B正确;
C.从 时刻到下一次卫星经过P点正上方时,设卫星转了m圈、P点转了n圈(m、n为正整数),则有 ,可得 , ,则卫星转过的角度为 ππ ,故C正确;
D.卫星距P点最近或最远时,一定都在赤道正上方。每次经最短时间实现卫星距P点最近到最远,需分两种情况讨论,第一种情况:卫星转了x圈再加半圈、P点转了y圈(x、y为正整数),则有 x、y无解,所以这种情况不可能;第二种情况:卫星转了x圈、P点转了y圈再加半圈,则有 ,可得 , ,则卫星绕地心转过的角度与地球转过的角度差为 ππππ ,故D正确。故选BCD。
三、实验题
11. 19.20 9.86 随着摆线长度l的增加,Δg逐渐减小 随着摆线长度l的增加,则 越接近于l,此时计算得到的g的差值越小
(1)[1]用游标卡尺测量摆球直径d=19mm+0.02mm×10=19.20mm
(2)[2]单摆的摆长为L=990.1mm+ ×19.20mm=999.7mm,根据 可得 ,带入数据 。
(3)[3][4]由图可知,随着摆线长度l的增加,Δg逐渐减小,原因是随着摆线长度l的增加,则 越接近于l,此时计算得到的g的差值越小。
12. 变大 12.6 272 12
(1)[1]闭合S1,滑动变阻器Rp是分压接法,滑片P向右滑动后,用多用电表交流电压挡测量线圈L1两端的电压。线圈L1两端的电压增大,因此与滑动前相比,电表的示数变大。
(2)[2]保持S2断开状态,调整E输出的交流电频率为50 Hz,多用电表交流电压挡测得线圈L1两端的电压为U1=2500 mV。线圈L2两端电压u随时间t的变化曲线如图所示,由 图像可得,线圈L2两端电压为 ,则线圈L1两端与L2两端的电压比值为 。
(3)[3]闭合S2,滑动P到某一位置并保持不变。由U−R关系曲线可得,当频率为1000 Hz时,当负载电阻R0=20 Ω时,R0两端的电压为UR0=272mV。
[4]当频率为50 Hz 时,由U−R关系曲线
两线交点可知 ,故需给R0串联一电阻,此串联电阻值为 串 。
四、解答题
13. (1) ;(2) ,
(1)根据匀变速直线运动位移与速度关系有 ,解得 。
(2)根据速度公式有 ,解得 ,根据动能定理有 合 ,解得 合 。
14. (1) ;(2)3m;(3)
(1)球1第一次经过P点后瞬间速度变为2v0,所以 。
(2)球1与球2发生弹性碰撞,且碰后速度大小相等,说明球1碰后反弹,则 , ,联立解得 , 。
(3)设两球从第一次碰撞到第二次碰撞所用时间为Δt,则 , ,所以 。
15. (1) , ;(2) , ;(3) ,
(1)粒子M点垂直于电场方向入射,粒子在电场中做类平抛运动,沿电场方向做匀加速直线运动,垂直于电场方向做匀速直线运动,在N点将速度沿电场方向与垂直于电场方向分解,在垂直于电场方向上有 ,解得 ,粒子从 过程,根据动能定理有 ,解得 。
(2)对于从M点射入的粒子,沿初速度方向的位移为 ,沿电场方向的位移为 ,令N点横坐标为 ,根据几何关系有 ,解得 ,根据上述与题意可知,令粒子入射速度为v,则通过N点进入磁场的速度为2v,令边界上点的坐标为(x,y)则在沿初速度方向上有 ,在沿电场方向有 ,解得 。
(3)由上述结果可知电场强度 ,解得 ,设粒子A第 次在磁场中做圆周运动的线速度为 ,可得第 次在N点进入磁场的速度为 ,第一次在N点进入磁场的速度大小为 ,可得 ,设粒子A第 次在磁场中运动时的磁感应强度为 ,由题意可得 ,由洛伦兹力提供向心力得 ,联立解得 ,粒子A第n次在磁场中的运动轨迹如图所示,
粒子每次在磁场中运动轨迹的圆心角均为300°,第n次离开磁场的位置C与N的距离等于 ,由C到N由动能定理得 ,联立上式解得 ,由类平抛运动沿电场方向的运动可得,粒子A第n次在电场中运动的时间为 ,粒子A第n次在磁场中运动的周期为 ,粒子A第n次在磁场中运动的时间为 ,设粒子A第n次在电场边界MN与x轴之间的无场区域的位移为 ,边界与x轴负方向的夹角为 ,则根据边界方程可得 , ,由正弦定理可得 ,解得 ,粒子A第n次在电场边界MN与x轴之间运动的时间为 ,粒子A从发射到第n次通过N点的过程,在电场中运动n次,在磁场和无场区域中均运动n-1次,则所求时间 ,由等比数列求和得 ,解得 。