【331699】第2章单元检测6
解直角三角形 全章测试
一、选择题
1.
2.在Rt△ABC中,∠C = 90°,下列式子不一定成立的是( )
A.sinA = sinB B.cosA=sinB C.sinA=cosB D.∠A+∠B=90°
3.直角三角形的两边长分别是6,8,则第三边的长为( )
A.10
B.2
C.10或2
D.无法确定
4.在Rt△ABC中,∠C=90°,当已知∠A和a时,求c,应选择的关系式是( )
A.c
=
B.c
=
C.c
= a·tanA D.c
=
5、
的值等于(
)
A.
B.
C.
D.1
6.在Rt△ABC中,∠C=90°,tan A=3,AC等于10,则S△ABC等于( )
A.3 B.300 C. D.15
7.当锐角α>30°时,则cosα的值是( )
A.大于
B.小于
C.大于
D.小于
8.小明沿着坡角为30°的坡面向下走了2米,那么他下降( )
A.1米
B.
米
C.2
D.
9
.如图,在四边形ABCD中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,
则AB=( )
A.4 B.5
C.
D.
10.已知Rt△ABC中,∠C=90°,tanA=
,BC=8,则AC等于(
)
A.6
B.
C.10
D.12
二、填空题
11.计算2sin30°+2cos60°+3tan45°=_______.
12.若sin28°=cosα,则α=________.
13.已知△ABC中,∠C=90°,AB=13,AC=5,则tanA=______.
14.某坡面的坡度为1:
,则坡角是_______度.
15.在△ABC中,∠C=90°,AB=10cm,sinA=
,则BC的长为_______cm.
16.如图,在高楼前
点测得楼顶的仰角为
,向高楼前进60米到
点,又测得仰角为
,则该高楼的高度大约为(
)
A.82米 B.163米 C.52米 D.70米
17.如图,小鸣将测倾器安放在与旗杆AB底部相距6m的C处,量出测倾器的高度CD=1m,测得旗杆顶端B的仰角
=60°,则旗杆AB的高度为 .(计算结果保留根号)
(16题) (17题)
三、解答题
18.由下列条件解直角三角形:在Rt△ABC中,∠C=90°:
(1)已知a=4,b=8, (2)已知b=10,∠B=60°.
(3)已知c=20,∠A=60°. (4)已知a=5,∠B=35°
19.计算下列各题.
(1)sin230°+cos245°+
sin60°·tan45°;
(2)
+
sin45°
四、解下列各题
20.如图所示,平地上一棵树高为5米,两次观察地面上的影子,第一次是当阳光与地面成45°时,第二次是阳光与地面成30°时,第二次观察到的影子比第一次长多少米?
21.如图,AB是江北岸滨江路一段,长为3千米,C为南岸一渡口,为了解决两岸交通困难,拟在渡口C处架桥.经测量得A在C北偏西30°方向,B在C的东北方向,从C处连接两岸的最短的桥长多少?(精确到0.1)
22.如图,点A是一个半径为300米的圆形森林公园的中心,在森林公园附近有B、C两个村庄,现要在B、C两村庄之间修一条长为1000米的笔直公路将两村连通,经测得∠ABC=45o,∠ACB=30o,问此公路是否会穿过该森林公园?请通过计算进行说明。
参考答案
1.D 2.A 3.C [点拨]长为8的边即可能为直角边,也可能为斜边.
4.A
[点拨]sinA=
,所以c=
.
5.A
6.D
7.D
[点拨]余弦值随着角度的增大而减小,α>30°,cos30°=
,所以cosa<
.
8.A
9.B
10.A
[点拨]tanA=
,AC=
=6.
11.
4+
[点拨]原式=2×
+2×
+3×1=4+
.
12.
62°
13.
[点拨]BC=
=
=12,tanA=
=
.
14.
30°
[点拨]坡角α的正切tanα=
,所以α=30°.
15. 8 16. 82米 17. (6+1)m
18.解:(1)c=
=4
;
(2)
=
=
,c=
,
∠A=90°-∠B=90°-60°=30°
(3)
a =
c×sinA=20×
=10
,b=c×cos60°=10×
=5.∠B=90°-∠A=90°-60°=30°
19.解:(1)原式=(
)2+(
)2+
×
×1=
+
+
=
+
(2)原式=
+
=1+
20.第一次观察到的影子长为5×cot45°=5(米);第二次观察到的影子长为5×cot30°=5
(米).两次观察到的影子长的差是5
-5米.
21.过点C作CD⊥AB于点D.
CD就是连接两岸最短的桥.设CD=x米.
在直角三角形BCD中,∠BCD=45°,所以BD=CD=x.
在直角三角形ACD中,∠ACD=30°,
所以AD=CD×tan∠ACD=x·tan30°=
x.
因为AD+DB=AB,所以x+
x=3,x=
≈1.9(米)
22.
解:
- 1【332169】中考模拟卷(一)
- 2【332170】中考热点专题:湖南中考特色题型考前集训
- 3【332168】中考模拟卷(二)
- 4【332167】正投影
- 5【332166】浙江省温州市鹿城区中考二模卷
- 6【332165】浙江省宁波市象山县中考模拟卷
- 7【332164】浙江省湖州市吴兴区2019-2020学年七年级下学期期末练习数学试题(word版)
- 8【332163】浙江省杭州市余杭区中考模拟卷
- 9【332162】枣阳市2020年中考适应性考试 数学试题
- 10【332160】圆 综合练习题 教师版 含答案
- 11【332161】枣阳市2020年中考适应性考试 数学答案
- 12【332157】宜城市2020年中考适应性考试 数学试题
- 13【332159】用频率估计概率
- 14【332158】易错专题:二次函数的最值或函数值的范围
- 15【332156】宜城市2020年中考适应性考试 数学答案
- 16【332155】襄州区2020年中考适应性考试 数学试题
- 17【332154】襄州区2020年中考适应性考试 数学答案
- 18【332153】襄城区2020年中考适应性考试 数学试题
- 19【332152】襄城区2020年中考适应性考试 数学答案
- 20【332151】相似 复习
- 【332150】天津市南开区中考二模卷
- 【332149】提高试题含答案
- 【332148】随机事件
- 【332147】苏科九下期中测试卷(3)
- 【332146】苏科九下期中测试卷(2)
- 【332145】苏科九下期中测试卷(1)
- 【332144】苏科九下期末测试卷(3)
- 【332143】苏科九下期末测试卷(2)
- 【332142】苏科九下期末测试卷(1)
- 【332140】四川省成都市中考模拟卷(四)
- 【332141】四川省凉山州西昌市中考模拟卷
- 【332139】思想方法专题:相交线、平行线与平移中的思想方法
- 【332138】数学培优辅差工作计划3
- 【332137】数学培优辅差工作计划2
- 【332135】数学活动——利用测角仪测量物体的高度
- 【332136】数学培优辅差工作计划1
- 【332134】数学答案
- 【332133】实际问题与二次函数
- 【332132】山东省滕州市2020初中毕业模拟考试试题
- 【332131】山东省滨州市中考二模卷