当前位置:首页 > 九年级 > 数学试卷

【331699】第2章单元检测6

时间:2025-02-07 09:46:43 作者: 字数:4667字
简介:

解直角三角形 全章测试

一、选择题

1.  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

2.在Rt△ABC中,∠C = 90°,下列式子不一定成立的是( )

AsinA = sinB BcosA=sinB CsinA=cosB D.∠A+∠B=90°

3.直角三角形的两边长分别是68,则第三边的长为( )

A10 B2 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> C102 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> D.无法确定

4.在Rt△ABC中,∠C=90°,当已知∠Aa时,求c,应选择的关系式是( )

Ac = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> Bc = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> Cc = a·tanA Dc =  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

5 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 的值等于( )

A <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> B <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> C <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> D1

6.在Rt△ABC中,∠C=90°tan A=3AC等于10,则S△ABC等于( )

A3 B300 CD15

7.当锐角α>30°时,则cosα的值是( )

A.大于 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> B.小于 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> C.大于 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> D.小于 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

8.小明沿着坡角为30°的坡面向下走了2米,那么他下降( )

A1B <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>C2 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> D <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

9 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> .如图,在四边形ABCD中,∠A=60°,∠B=∠D=90°BC=2CD=3

AB=( )

A4 B5

C <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> D <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>


10.已知Rt△ABC中,∠C=90°tanA= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> BC=8,则AC等于( )

A6 B <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> C10 D12

二、填空题

11.计算2sin30°+2cos60°+3tan45°=_______

12.若sin28°=cosα,则α=________

13.已知△ABC中,∠C=90°AB=13AC=5,则tanA=______

14.某坡面的坡度为1 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,则坡角是_______度.

15.在ABC中,∠C90°AB10cmsinA <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,则BC的长为_______cm.

16.如图,在高楼前 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 点测得楼顶的仰角为 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,向高楼前进60米到 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 点,又测得仰角为 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,则该高楼的高度大约为( )

A.82B.163C.52D.70

17.如图,小鸣将测倾器安放在与旗杆AB底部相距6mC处,量出测倾器的高度CD1m,测得旗杆顶端B的仰角 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>60°,则旗杆AB的高度为       .(计算结果保留根号)

组合 3  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>





16题) (17)



三、解答题

18.由下列条件解直角三角形:在Rt△ABC中,∠C=90°

1)已知a=4b=8, (2)已知b=10,∠B=60°



3)已知c=20,∠A=60°. 4)已知a=5,∠B=35°




19.计算下列各题.

1sin230°+cos245°+ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> sin60°·tan45°

2 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> + sin45°






四、解下列各题

20.如图所示,平地上一棵树高为5米,两次观察地面上的影子,第一次是当阳光与地面成45°时,第二次是阳光与地面成30°时,第二次观察到的影子比第一次长多少米?

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>




21.如图,AB是江北岸滨江路一段,长为3千米,C为南岸一渡口,为了解决两岸交通困难,拟在渡口C处架桥.经测量得AC北偏西30°方向,BC的东北方向,从C处连接两岸的最短的桥长多少?(精确到0.1

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>


22.如图,点A是一个半径为300米的圆形森林公园的中心,在森林公园附近有BC两个村庄,现要在BC两村庄之间修一条长为1000米的笔直公路将两村连通,经测得∠ABC=45o,∠ACB=30o,问此公路是否会穿过该森林公园?请通过计算进行说明。




 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>








参考答案

1D 2A 3C [点拨]长为8的边即可能为直角边,也可能为斜边.

4A [点拨]sinA= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,所以c= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

5A 6D 7D [点拨]余弦值随着角度的增大而减小,α>30°cos30°= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,所以cosa< <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

8A 9B 10A [点拨]tanA= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> AC= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> =6

114+ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> [点拨]原式=2× <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> +2× <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> +3×1=4+ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 1262°

13 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> [点拨]BC= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> =12tanA= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

1430° [点拨]坡角α的正切tanα= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,所以α=30°

158 16. 8217. 61m

18.解:(1c= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> =4 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

2

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> c= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,

A=90°-∠B=90°-60°=30°

3

a = c×sinA=20× <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> =10 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> b=c×cos60°=10× <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> =5.∠B=90°-∠A=90°-60°=30°

19.解:(1)原式= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>2+ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>2+ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> × <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ×1= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> + <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> + <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> = <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> + <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

2)原式= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> + <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> =1+ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

20.第一次观察到的影子长为5×cot45°=5(米);第二次观察到的影子长为5×cot30°=5 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> (米).两次观察到的影子长的差是5 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> -5米.

21.过点CCD⊥AB于点D

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

CD就是连接两岸最短的桥.设CD=x米.

在直角三角形BCD中,∠BCD=45°,所以BD=CD=x

在直角三角形ACD中,∠ACD=30°

所以AD=CD×tan∠ACD=x·tan30°= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> x

因为AD+DB=AB,所以x+ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> x=3x= <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ≈1.9(米)

22解: <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>