当前位置:首页 > 九年级 > 数学试卷

【331688】第1章单元检测5

时间:2025-02-07 09:46:06 作者: 字数:9671字
简介:

1章单元检测

【本检测题满分100分,时间90分钟】

  1. 选择题(每小题3分,共30分)

1组合 80 .如图,正五边形 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 是由正五边形 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 经过位似变换得到的,若 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,则下列结论正确的是( )

A. <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> B. <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

C. <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> D. <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

2.(南京中考)若△ABC∽△ABC′,相似比为1∶2,则△ABC与△ABC的面积的比为( )

A. 1∶2 B. 2∶1

C. 1∶4 D. 4∶1

3.已知四条线段 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 是成比例线段,即 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,下列说法错误的是( )

A <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

B.  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

C.  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

D <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

4.已知:在△ABC中,BC=10BC边上的高h=5,点E在边AB上,过点EEFBC,交AC边于点F,点DBC边上一点,连接DEDF,设点EBC的距离为x,则△DEF的面积S关于x的函数图象大致为( )

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

5. <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,且 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,则 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 的值是( )

A.14 B.42 C.7 D. <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

6.如图,已知 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> // <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> // <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 分别交 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 于点 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,则图中共有相似三角形( )

A <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>
.4
B
.5C. 6D.7


7.如图,在 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 中,∠ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 的垂直平分线 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 的延长线于点 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,则 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 的长为( )

A. <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> B.  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> C. <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> D. <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

8.下列四组图形中,不是相似图形的是( )

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>






9.已知两个相似多边形的面积比是916,其中较小多边形的周长为36 cm,则较大多边形的周长为( )

A.48 cm B.54 cm C.56 cm D.64 cm

10.(陕西中考)手工制作课上,小红利用一些花布的边角料,剪裁后装裱手工画.下面四个图案是她剪裁出的空心不等边三角形、等边三角形、正方形和矩形花边,其中每个图案花边的宽度都相同,那么每个图案中花边的内外边缘所围成的几何图形不相似的 是( )

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

二、填空题(每小题3分,共24分)

11.如图,在△ABC中,DEBC, <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,ADE的面积为8,则△ABC的面积为 . 11题图

12.如果一个三角形的三边长为51213,与其相似的三角形的最长的边为39,那么较大的三角形的周长为_______,面积为________

13.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B,折痕为EF已知ABAC3BC4,若以点BFC为顶点的三角形与△ABC相似,那么BF的长度是

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>








14. <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,则 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> .

15.如图是小明设计用手电来测量某古城墙高度的示意图,点 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 处放一水平的平面镜,光线从点 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 出发经平面镜反射后刚好射到古城墙 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 的顶端 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 处,已知 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,且测得AB=1.2 mBP=1.8 mPD=12 m那么该古城墙的高度是_____ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> .

16.已知五边形 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ∽五边形ABCDE,∠A=120°,∠B=130°,∠C=105°,∠D=85°,则∠E= .


17.如图,在△ABC中,DE分别是ACAB上的点,AED=∠C,AB=6,AD=4,AC=5, <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> _______


 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

18.如图,△ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 三个顶点的坐标分别为 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,以原点为位似中心, 将△ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 缩小,位似比为 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,则线段 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 的中点 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 变换后对应点的坐标为_________.

三、解答题(共46分)

19.(6)如图,在边长为1个长度单位的小正方形组成的网格中,给出了格点 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> (顶点是网格线的交点).

1)将 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 向上平移3个单位得到 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,请画出 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

2)请画出一个格点 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,使 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,且相似比不为1.

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 组合 128

20.6分)已知:如图,在△ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 中, <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,点 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 在边 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 上, <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 相交于点 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,且∠ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

求证:(1)△ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ∽△ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ;(2 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

2组合 113 1.8分)如图,在正方形 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 中, <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 分别是边 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 上的点, <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 连结 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 并延长交 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 的延长线于点 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

1)求证: <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

2)若正方形的边长为4,求 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 的长.



22.7分)如图,在6×8网格图中,每个小正方形边长均为1,点O和△ABC的顶点均在小正方形的顶点.

1)以O为位似中心,在网格图中作△ABC和△ABC位似,且位似比为1 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 2

2)连接(1)中的AA′,求四边形AACC的周长(结果保留根号).自选图形 151

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

23.8分)已知:如图所示,正方形ABCD中,EAC上一点,EFAB于点FEGAD

于点GAB=6AEEC=2∶1,求S四边形AFEG

24.8分)已知:如图, <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 上一点, <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 分别交 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 于点 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,∠1=∠2,探索线段 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 之间的关系,并说明理由.

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>









25.8分)(呼和浩特中考)如图,已知反比例函数 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> k是常数)的图象经过点A14),点Bmn),其中m1AMx轴,垂足为MBNy轴,垂足为NAMBN的交点为C.

1)写出反比例函数解析式;

2)求证:△ACB∽△NOM

3)若ACB与△NOM的相似比为2,求出B点的坐标及AB所在直线的解析式.


参考答案

1. B 解析:由正五边形 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 是由正五边形 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 经过位似变换得到的,知 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 所以选项B正确.

2.C 解析:根据相似三角形的面积比等于相似比的平方的性质直接得出结果△ABC与 △ABC的面积的比为1∶4.故选C.

3.C 解析:由比例的基本性质知ABD项都正确,C项不正确.

4.D 解析:EFBC得到△AEF∽△ABC,所以 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,即 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,解得EF=10-2x, <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,即Sx的函数解析式 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 是二次函数,其中x的取值范围是0<x<5,因此,只有选项D符合题意.

5.D 解析:设 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,则 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 所以 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 所以 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> .

6.C 解析:△ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ∽△ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ∽△ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ∽△ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> .

7. B 解析:在 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 中,∠ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 由勾股定理得 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

因为 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 所以 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> .又因为 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 所以

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ∽△ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 所以 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,所以 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,所以 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> .

8.D 解析:根据相似图形的定义知,ABC项都为相似图形,D项中一个是等边三角形,一个是直角三角形,不是相似图形.

9. A 解析:两个相似多边形的面积比是916,则相似比为34,所以两图形的周长比为34,即3648,故选A.

10.D 解析:选项A中,将里面的三角形任意一条边向两边延长与外面三角形的两边相交,利用平行线的性质可以得到内、外两三角形两个角对应相等,因此两三角形相似;B中,由于任意两个等边三角形相似,因此B中两三角形相似;同理C中两正方形相似;D中内、外两矩形对应边不成比例,故两矩形不相似.

11.18 解析:∵ DEBC,∴ △ABCADE,∴ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ADE的面积为8,∴ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 解得 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> =18.

12.90270 解析:设另一三角形的其他两边长为 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 由题意得 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,所以 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 又因为 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 所以此三角形是直角三角形,所以周长为 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

13. <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 2 解析:设 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,由折叠的性质知 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

当△ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ∽△ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 时, <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,∴  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,解得 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> .

当△ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ∽△ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>, <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,∴  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,解得 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> .∴  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 的长度是 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>2.

14.  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 解析:设 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,则 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> .

15.8 解析:由反射角等于入射角知∠ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 所以△ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ∽△ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 所以 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,所以 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,所以CD=8 m. 

16 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> . <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 解析:因为五边形 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ∽五边形 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 所以 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> .又因为五边形的内角和为 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 所以 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> .

17. <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 解析:在△ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 和△ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 中,∵ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,∴ △ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ∽△ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> .

  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ∴  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> .

18. <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 解析:∵  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 22), <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>64),∴ AC中点坐标 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 为(43.又以原点为位似中心,将△ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 缩小,位似比为 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,∴ 线段 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 的中点 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 变换后对应点的坐标为 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> .

19.解:(1)作出 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 如图所示.

2)本题是开放题,答案不唯一,只要作出的 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 满足条件即可.

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> [来源:Z|xx|k.Com][来源:学科网]

19题答图

20.证明:(1)∵  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,∴ ∠ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,∴  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,∴ △ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ∽△ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

2)由△ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ∽△ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,得 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,∴  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>[来源:||Z|X|X|K]

由△ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ∽△ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,得 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

∵ ∠ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,∴ △ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ∽△ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> .∴  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> . ∴  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

21.1)证明:在正方形 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 中, <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> .

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,∴  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> .

2)解:∵  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> .

又由(1)得 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> .

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,得 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,∴ △ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ∽△ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,∴  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> .

22. 解:(1)如图.

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>











2)四边形 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 的周长=4+6 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> .

23.分析:通过观察可以知道四边形 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 是正方形, <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 的值与 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 的值相等,从而可以求出 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 的长;根据相似多边形的面积比等于相似比的平方可以求出四边形 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 的面积.

:已知正方形ABCD,且EFABEGAD,∴ EFCBEGDC.

四边形AFEG是平行四边形.

∵ ∠1=∠2=45°,∴  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> .

又∵ ∠ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,∴ 四边形AFEG是正方形,

正方形ABCD正方形AFEG

S正方形ABCDS正方形AFEG=AB2AF2(相似多边形的面积比等于相似比的平方).

在△ABC中,EFCB ,∴ AEEC=AFFB=2∶1.

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,∴  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> .∴ S正方形ABCDS正方形AFEG=36∶16

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> .

24.解: <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> . 理由如下:

∵ ∠ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> .[来源:学科网]

又∵  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ∴ △ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ∽△ <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> ,即 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> .

25.1)解:∵ 函数 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 的图象经过(14)点,

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 反比例函数解析式为 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

2)证明:∵ Bmn),A14),

AC = 4–nBC = m–1ON = nOM = 1

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

Bmn)在函数 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> 的图象上,∴  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>  <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

又∵ ∠ACB =∠NOM = 90°,∴ △ACB∽△NOM.

3)解:∵ △ACB与△NOM的相似比为2

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

B点坐标为 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

AB所在直线的解析式为y = kxb

 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a> <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>

AB所在直线的解析式为 <a href="/tags/1/" title="单元" class="c1" target="_blank">单元</a>






[来源:Zxxk.Com]