当前位置:首页 > 九年级 > 数学试卷

【331270】24.2.2 第2课时 切线的判定与性质

时间:2025-02-02 18:19:26 作者: 字数:3256字
简介:

2课时 切线的判定与性质


1.过圆上一点可以作圆的______条切线;过圆外一点可以作圆的_____条切线;过圆内一点的圆的切线______

2.以三角形一边为直径的圆恰好与另一边相切,则此三角形是_______

3.下列直线是圆的切线的是( )

A.与圆有公共点的直线 B.到圆心的距离等于半径的直线

C.垂直于圆的半径的直线 D.过圆直径外端点的直线

4OA平分∠BOCPOA上任意一点(O除外),若以P为圆心的⊙POC相切,那么⊙POB的位置位置是( )

A.相交 B.相切 C.相离 D.相交或相切

5.△ABC中,∠C=90°AB=13AC=12,以B为圆心,5为半径的圆与直线AC的位置关系是( )

A.相切 B.相交 C.相离 D.不能确定

6.如图,AB是半径⊙O的直径,弦ACAB30°角,且AC=CD

1)求证:CD是⊙O的切线;(2)若OA=2,求AC的长.

 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/951/" title="切线" class="c1" target="_blank">切线</a>



7.如图,AB是半圆O的直径,AD为弦,∠DBC=∠A

1)求证:BC是半圆O的切线;

2)若OC∥ADOCBDEBD=6CE=4,求AD的长.

 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/951/" title="切线" class="c1" target="_blank">切线</a>




8.如图,AB为⊙O的直径,弦CD⊥AB于点M,过点BBE∥CD,交AC的延长线于点E,连结BC

1)求证:BE为⊙O的切线;

2)如果CD=6tan∠BCD= <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/951/" title="切线" class="c1" target="_blank">切线</a> ,求⊙O的直径.

 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/951/" title="切线" class="c1" target="_blank">切线</a>

9.在直角坐标系中,⊙M的圆心坐标为Ma0),半径为2,如果⊙My轴相离,那么a的取值范围是______

10.菱形的对角线相交于O,以O为圆心,以点O到菱形一边的距离为半径的⊙O与菱形其它三边的位置关系是( )

A.相交 B.相离 C.相切 D.无法确定

11.平面直角坐标系中,点A34),以点A为圆心,5为半径的圆与直线y=x的位置关系是( )

A.相离 B.相切 C.相交 D.以上都有可能

12.如图,已知:△ABC内接于⊙O,点DOC的延长线上,sin= <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/951/" title="切线" class="c1" target="_blank">切线</a> ,∠D=30°

1)求证:AD是⊙O的切线;(2)若AC=6,求AD的长.

 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/951/" title="切线" class="c1" target="_blank">切线</a>

13.已知:如图,A是⊙O上一点,半径OC的延长线与过点A的直线交于B点,OC=BCAC= <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/951/" title="切线" class="c1" target="_blank">切线</a> OB

1)求证:AB是⊙O的切线;(2)若∠ACD=45°OC=2,求弦CD的长.

 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/951/" title="切线" class="c1" target="_blank">切线</a>

14.如图,P为⊙O外一点,PO交⊙OC,过⊙O上一点A作弦AB⊥POE,若

∠EAC=∠CAP,求证:PA是⊙O的切线.

 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/951/" title="切线" class="c1" target="_blank">切线</a>



15.如图,A是以BC为直径的⊙O上一点,AD⊥BC于点D,过点B作⊙O的切线,与CA的延长线相交于点EGAD的中点,连结OG并延长与BE相交于点F,延长AFCB的延长线相交于点P

1)求证:BF=EF

2)求证:PA是⊙O的切线;

3)若FG=BF,且⊙O的半径长为3 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/951/" title="切线" class="c1" target="_blank">切线</a> ,求BDFG的长度.

 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/951/" title="切线" class="c1" target="_blank">切线</a>




答案:

112,不存在 2.直角三角形 3B 4B 5A 6.(1)略 (22 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/951/" title="切线" class="c1" target="_blank">切线</a>

7.(1)略 (2 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/951/" title="切线" class="c1" target="_blank">切线</a> 8.(1)略 (2 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/951/" title="切线" class="c1" target="_blank">切线</a> 9a>2a<2

10C 11C 12.(1)略 (26 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/951/" title="切线" class="c1" target="_blank">切线</a> 13.(1)略 (2 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/951/" title="切线" class="c1" target="_blank">切线</a> + <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/951/" title="切线" class="c1" target="_blank">切线</a>

14.提示:连结OA,证OA⊥AP

15.(1)略 (2)略 (3BD=2 <a href="/tags/16/" title="课时" class="c1" target="_blank">课时</a> <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/868/" title="判定" class="c1" target="_blank">判定</a> <a href="/tags/951/" title="切线" class="c1" target="_blank">切线</a> FG=3