当前位置:首页 > 九年级 > 数学试卷

【331662】初中数学人教九下第二十八章卷(2)

时间:2025-02-07 09:43:46 作者: 字数:26724字
简介:

单元测试卷(二)

一、选择题(每小题3分,共 24分)

1.斜坡的倾斜角为α,一辆汽车沿这个斜坡前进了500米,则它上升的高度是(  )

A500•sinα B <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> C500•cosα D <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

2.如图,△ABC的项点都在正方形网格的格点上,则cosC的值为(  )

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

A <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> B <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> C <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> D <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

3.如图,RtABC中,∠BAC=90°ADBCD,设∠ABC=α,则下列结论错误的是(  )

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

ABC= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> BCD=AD•tanα CBD=ABcosα DAC=ADcosα

4.如图,若△ABC和△DEF的面积分别为S1S2,则(  )

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

AS1= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> S2 BS1= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> S2 CS1=S2 DS1= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> S2

5.如图,为了测量河岸AB两点的距离,在与AB垂直的方向上取点C,测得AC=aABC=α,那么AB等于(  )

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

Aa•sinα Ba•cosα Ca•tanα D <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

6.如图,小丽用一个两锐角分别为30°60°的三角尺测量一棵树的高度,已知她与树之间的距离为9.0m,眼睛与地面的距离为1.6m,那么这棵树的高度大约是(  )

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

A5.2m B6.8m C9.4m D17.2m

7.如图,在两建筑物之间有一旗杆,高15米,从A点经过旗杆顶点恰好看到矮建筑物的墙角C点,且俯角α60°,又从A点测得D点的俯角β30°,若旗杆底点GBC的中点,则矮建筑物的高CD为(  )

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

A20 B <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> C <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> D <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

8.如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为1.6m,则这棵树的高度为(  )(结果精确到0.1m <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> 1.73).

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

A3.5m B3.6m C4.3m D5.1m


二、填空题(每小题5分,共20分)

9.如图,两建筑物的水平距离BC18m,从A点测得D点的俯角α30°,测得C点的俯角β60°.则建筑物CD的高度为   m(结果不作近似计算).

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

10.如图,AC是操场上直立的一个旗杆,从旗杆上的B点到地面C涂着红色的油漆,用测角仪测得地面上的D点到B点的仰角是BDC=45°,到A点的仰角是ADC=60°(测角仪的高度忽略不计)如果BC=3米,那么旗杆的高度AC=  米.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

11.如图,小明在测量旗杆高度的实践活动中,发现地面上有一滩积水,他刚好能从积水中看到旗杆的顶端,测得积水与旗杆底部距离CD=6米,他与积水的距离BC=1米,他的眼睛距离地面AB=1.5米,则旗杆的高度DE=   米.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

12.如图,某山顶上建有手机信号中转塔AB,在地面D处测得塔尖的仰角ADC=60°,塔底的仰角BDC=45°,点D距塔AB的距离DC100米,手机信号中转塔AB的高度 (结果保留根号).

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>


三、解答题(共56分)

136分)在一个阳光明媚,微风习习的周末,小明和小强一起到聂耳文化广场放风筝,放了一会儿,两个人争吵起来:

小明说:“我的风筝飞得比你的高”.

小强说:“我的风筝引线比你的长,我的风筝飞得更高”.

谁的风筝飞得更高呢?于是他们将两个风筝引线的一段都固定在地面上的C处(如图),现已知小明的风筝引线(线段AC)长30米,小强的风筝引线(线段BC)长36米,在C处测得风筝A的仰角为60°,风筝B的仰角为45°,请通过计算说明谁的风筝飞得更高?

(结果精确到0.1米,参考数据: <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> 1.41 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> 1.73

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>















148分)如图,一热气球在距地面90米高的P处,观测地面上点A的俯角为60°,气球以每秒9米的速度沿AB方向移动,5秒到达Q处,此时观测地面上点B的俯角为45°.(点PQAB在同一铅直面上).

(1)若气球从Q处继续向前移动,方向不变,再过几秒位于B点正上方?

(2)AB的长(结果保留根号).

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>











 

156分)在数学课外实践活动中,要测量教学楼的高度AM.下面是两位同学的对话:

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

请你根据两位同学的对话,结合图形计算教学楼的高度AM.(参考数据:sin20° <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> cos20° <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> tan20° <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>











166分)国家海洋局将中国钓鱼岛最高峰命名为“高华峰”,并对钓鱼岛进行常态化立体巡航.如图1,在一次巡航过程中,巡航飞机飞行高度为2001米,在点A测得高华峰顶F点的俯角为30°,保持方向不变前进1200米到达B点后测得F点俯角为45°,如图2.请据此计算钓鱼岛的最高海拔高度多少米.(结果保留整数,参考数值: <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> =1.732 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> =1.414

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>







176分)如图,小方在五月一日假期中到郊外放风筝,风筝飞到C 处时的线长为20米,此时小方正好站在A处,并测得CBD=60°,牵引底端B离地面1.5米,求此时风筝离地面的高度(结果精确到个位)

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>









 

186分)如图,小山顶上有一信号塔AB,山坡BC的倾角为30°,现为了测量塔高AB,测量人员选择山脚C处为一测量点,测得塔顶仰角为45°,然后顺山坡向上行走100米到达E处,再测得塔顶仰角为60°,求塔高AB(结果保留整数, <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> 1.73 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> 1.41

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>











 

198分)天塔是天津市的标志性建筑之一,某校数学兴趣小组要测量天塔的高度,如图,他们在点A处测得天塔最高点C的仰角为45°,再往天塔方向前进至点B处测得最高点C的仰角为54°AB=112m,根据这个兴趣小组测得的数据,计算天塔的高度CDtan36°0.73,结果保留整数).

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>






2010分)如图,一只猫头鹰蹲在一棵树ACB(点BAC上)处,发现一只老鼠躲进短墙DF的另一侧,猫头鹰的视线被短墙遮住,为了寻找这只老鼠,它又飞至树顶C处,已知短墙高DF=4米,短墙底部D与树的底部A的距离为2.7米,猫头鹰从C点观测F点的俯角为53°,老鼠躲藏处M(点MDE上)距D3米.

(参考数据:sin37°0.60cos37°0.80tan37°0.75

(1)猫头鹰飞至C处后,能否看到这只老鼠?为什么?

(2)要捕捉到这只老鼠,猫头鹰至少要飞多少米(精确到0.1米)?

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>







答案解析

1.斜坡的倾斜角为α,一辆汽车沿这个斜坡前进了500米,则它上升的高度是(  )

A500•sinα B <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> C500•cosα D <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

【考点】T9:解直角三角形的应用﹣坡度坡角问题.

【专题】选择题

【分析】根据题意画出图形,再利用坡角的正弦值即可求解.

【解答】解:如图,∠A=αAE=500

EF=500sinα

故选A

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

【点评】此题主要考查坡度坡角问题,正确掌握坡角的定义是解题关键.


2.如图,△ABC的项点都在正方形网格的格点上,则cosC的值为(  )

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

A <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> B <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> C <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> D <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

【考点】T1:锐角三角函数的定义;KQ:勾股定理.

【专题】选择题

【分析】先构建格点三角形ADC,则AD=2CD=4,根据勾股定理可计算出AC,然后根据余弦的定义求解.

【解答】解:在格点三角形ADC中,AD=2CD=4

∴AC= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> = <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> =2 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

∴cosC= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> = <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> = <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

故选B

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

【点评】本题考查了锐角三角函数的定义:在直角三角形中,一锐角的余弦等于它的邻边与斜边的比值.也考查了勾股定理.


3.如图,RtABC中,∠BAC=90°ADBCD,设∠ABC=α,则下列结论错误的是(  )

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

ABC= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> BCD=AD•tanα CBD=ABcosα DAC=ADcosα

【考点】T7:解直角三角形.

【专题】选择题

【分析】在直角三角形中利用锐角三角函数求角边关系即可.

【解答】解:A.在RtABC中,sinα= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

∴BC= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> ,故A正确;


B.∵∠B+∠BAD=90°,∠CAD+∠BAD=90°

∴∠B=CAD=α

RtADC中,tanα= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

∴CD=AD•tanα

B正确;


C.在RtABD中,

cosα= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

∴BD=AB•cosα

C正确;


D.在RtADC中,cosα= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

∴AD=AC•cosα

D错误;

故选D

【点评】本题主要考查了直角三角形角边关系,熟练掌握边角之间的关系:sinA=A的对边斜边=accosA=A的邻边斜边=bctanA=A的对边∠A的邻边=ab

abc分别是∠A、∠B、∠C的对边)是解答此题的关键.


4.如图,若△ABC和△DEF的面积分别为S1S2,则(  )

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

AS1= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> S2 BS1= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> S2 CS1=S2 DS1= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> S2

【考点】T7:解直角三角形;K3:三角形的面积.

【专题】选择题

【分析】A点作AGBCG,过D点作DHEFH.在RtABG中,根据三角函数可求AG,在RtABG中,根据三角函数可求DH,根据三角形面积公式可得S1S2,依此即可作出选择.

【解答】解:过A点作AGBCG,过D点作DHEFH

RtABG中,AG=AB•sin40°=5sin40°

∠DEH=180°﹣140°=40°

RtDHE中,DH=DE•sin40°=8sin40°

S1=8×5sin40°÷2=20sin40°

S2=5×8sin40°÷2=20sin40°

S1=S2

故选C

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

【点评】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,关键是作出高线构造直角三角形.


5.如图,为了测量河岸AB两点的距离,在与AB垂直的方向上取点C,测得AC=aABC=α,那么AB等于(  )

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

Aa•sinα Ba•cosα Ca•tanα D <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

【考点】T8:解直角三角形的应用.

【专题】选择题

【分析】根据已知角的正切值表示即可.

【解答】解:AC=aABC=α,在直角ABCtanα= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

AB= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

故选D

【点评】此题主要考查了解直角三角形的应用,正确记忆三角函数的定义是解决本题的关键.


6.如图,小丽用一个两锐角分别为30°60°的三角尺测量一棵树的高度,已知她与树之间的距离为9.0m,眼睛与地面的距离为1.6m,那么这棵树的高度大约是(  )

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

A5.2m B6.8m C9.4m D17.2m

【考点】TA:解直角三角形的应用﹣仰角俯角问题.

【专题】选择题

【分析】三角尺和树构成直角三角形,根据一直角边和三角尺的度数,可将眼睛到树尖的距离求出,加上眼睛与地面的距离即为这棵树的高度.

【解答】解:由图中所示:眼睛到树尖的距离h1=tan30°×9= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

眼睛与地面之间的距离:h2=1.6

这棵树的高度h=h1+h2=3 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> +1.66.8m).

故选B

【点评】本题主要是将实际问题与解直角三角形联系起来,使求解过程变得简单.



7.如图,在两建筑物之间有一旗杆,高15米,从A点经过旗杆顶点恰好看到矮建筑物的墙角C点,且俯角α60°,又从A点测得D点的俯角β30°,若旗杆底点GBC的中点,则矮建筑物的高CD为(  )

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

A20 B <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> C <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> D <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

【考点】TA:解直角三角形的应用﹣仰角俯角问题.

【分析】根据点GBC中点,可判断EGABC的中位线,求出AB,在RtABC中求出BC,在RtAFD中求出DF,继而可求出CD的长度.

【解答】解:GBC中点,EGAB

EGABC的中位线,

AB=2EG=30米,

RtABC中,CAB=30°

BC=ABtanBAC=30× <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> =10 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> 米.

如图,过点DDFAF于点F

RtAFD中,AF=BC=10 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> 米,

FD=AF•tanβ=10 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> × <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> =10米,

综上可得:CD=AB﹣FD=30﹣10=20米.

故选:A

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

【点评】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度.

 

8.如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为1.6m,则这棵树的高度为(  )(结果精确到0.1m <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> 1.73).

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

A3.5m B3.6m C4.3m D5.1m

【考点】TA:解直角三角形的应用﹣仰角俯角问题.

【专题】12 :应用题.

【分析】CD=x,在RtACD中求出AD,在RtCED中求出ED,再由AE=4m,可求出x的值,再由树高=CD+FD即可得出答案.

【解答】解:设CD=x

RtACD中,CD=xCAD=30°

tan30°=CDAD=xAD

AD= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> x

RtCED中,CD=xCED=60°

tan60°=CDED=xED

ED= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> x

由题意得,AD﹣ED= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> x﹣ <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> x=4

解得:x=2 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

则这棵树的高度=2 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> +1.65.1m

故选D

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

【点评】本题考查了解直角三角形的应用,解答本题关键是构造直角三角形,利用三角函数的知识表示出相关线段的长度.

 

9.如图,两建筑物的水平距离BC18m,从A点测得D点的俯角α30°,测得C点的俯角β60°.则建筑物CD的高度为 12 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>  m(结果不作近似计算).

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

【考点】TA:解直角三角形的应用﹣仰角俯角问题.

【分析】首先过点DDEAB于点E,可得四边形BCDE是矩形,然后分别在RtABCRtADE中,利用正切函数的知识,求得ABAE的长,继而可求得答案.

【解答】解:过点DDEAB于点E

则四边形BCDE是矩形,

根据题意得:ACB=β=60°ADE=α=30°BC=18m

DE=BC=18mCD=BE

RtABC中,AB=BC•tanACB=18×tan60°=18 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> m),

RtADE中,AE=DE•tanADE=18×tan30°=6 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> m),

DC=BE=AB﹣AE=18 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> ﹣6 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> =12 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> m).

故答案为:12 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

【点评】本题考查俯角的知识.此题难度不大,注意能借助俯角构造直角三角形并解直角三角形是解此题的关键,注意掌握数形结合思想的应用.

 

10.如图,AC是操场上直立的一个旗杆,从旗杆上的B点到地面C涂着红色的油漆,用测角仪测得地面上的D点到B点的仰角是BDC=45°,到A点的仰角是ADC=60°(测角仪的高度忽略不计)如果BC=3米,那么旗杆的高度AC= 3 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>  米.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

【考点】TA:解直角三角形的应用﹣仰角俯角问题.

【专题】12 :应用题.

【分析】RtBDC中,根据BDC=45°,求出DC=BC=3米,在RtADC中,根据ADC=60°即可求出AC的高度.

【解答】解:在RtBDC中,

∵∠BDC=45°

DC=BC=3米,

RtADC中,

∵∠ADC=60°

AC=DCtan60°=3× <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> =3 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> (米).

故答案为:3 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

【点评】本题考查了解直角三角形的应用,解题的关键是根据仰角构造直角三角形,解直角三角形,难度一般.

 

11.如图,小明在测量旗杆高度的实践活动中,发现地面上有一滩积水,他刚好能从积水中看到旗杆的顶端,测得积水与旗杆底部距离CD=6米,他与积水的距离BC=1米,他的眼睛距离地面AB=1.5米,则旗杆的高度DE= 9 米.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

【考点】TA:解直角三角形的应用﹣仰角俯角问题.

【分析】先根据光的反射定律得出ACB=ECD,再得出RtACBRtECD,根据相似三角形对应边成比例即可得出结论.

【解答】解:根据光的反射定律,ACB=ECD

∵∠ACB=EDCCD=6米,AB=1.5米,BC=1米,

RtACBRtECD

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> = <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> ,即 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> = <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> ,解得DE=9

故答案为:9

【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,熟知相似三角形的对应边成比例是解答此题的关键.

 

12.如图,某山顶上建有手机信号中转塔AB,在地面D处测得塔尖的仰角ADC=60°,塔底的仰角BDC=45°,点D距塔AB的距离DC100米,手机信号中转塔AB的高度  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> 米(结果保留根号).

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

【考点】TA:解直角三角形的应用﹣仰角俯角问题.

【分析】先在RtBCD中,根据BDC=45°,得出BC=CD=100;再在RtACD中,根据正切函数的定义,求出AC=100 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> ,然后由AB=AC﹣BC即可求解.

【解答】解:由题意可知,ACDBCD都是直角三角形.

RtBCD中,∵∠BDC=45°

BC=CD=100

RtACD中,∵∠ADC=60°CD=100

tanADC= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> ,即 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

AB=AC﹣BC= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

答:手机信号中转塔的高度为 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> 米.

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,难度适中,解答本题的关键是借助仰角构造直角三角形并解直角三角形.

 

13.在一个阳光明媚,微风习习的周末,小明和小强一起到聂耳文化广场放风筝,放了一会儿,两个人争吵起来:

小明说:“我的风筝飞得比你的高”.

小强说:“我的风筝引线比你的长,我的风筝飞得更高”.

谁的风筝飞得更高呢?于是他们将两个风筝引线的一段都固定在地面上的C处(如图),现已知小明的风筝引线(线段AC)长30米,小强的风筝引线(线段BC)长36米,在C处测得风筝A的仰角为60°,风筝B的仰角为45°,请通过计算说明谁的风筝飞得更高?

(结果精确到0.1米,参考数据: <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> 1.41 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> 1.73

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

【考点】TA:解直角三角形的应用﹣仰角俯角问题.

【分析】RtACDRtBCE中,分别解直角三角形,求得ADBE的高度,比较即可.

【解答】解:分别过AB作地面的垂线,垂足分别为DE

RtACD中,

sinACD= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

AD=AC•sinACD=30×sin60°=15 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> 26.0(米).

RtBCE中,

sinBCE= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

BE=BC•sinBCE=36×sin45°=18 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> 25.4(米).

26.025.4

小明的风筝飞得更高.

【点评】本题考查了解直角三角形的应用,要求学生能借助仰角构造直角三角形并解直角三角形.

 

14.如图,一热气球在距地面90米高的P处,观测地面上点A的俯角为60°,气球以每秒9米的速度沿AB方向移动,5秒到达Q处,此时观测地面上点B的俯角为45°.(点PQAB在同一铅直面上).

(1)若气球从Q处继续向前移动,方向不变,再过几秒位于B点正上方?

(2)AB的长(结果保留根号).

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

【考点】TA:解直角三角形的应用﹣仰角俯角问题.

【分析】(1)首先过点BBHPQ,垂足为H,即可得出QH=HB=90m,进而利用平移速度得出答案;

(2)首先过点PPEAB,垂足为E,利用tan60°= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> = <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> = <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> ,进而得出AE的长,再利用PH=BE进而得出AB的长.

【解答】解:(1)过点BBHPQ,垂足为H

一热气球在距地面90米高的P处,

HB=90m

∵∠HQB=45°

∴∠2=45°

QH=HB=90m

90÷9=10(秒),

答:气球从Q处继续向前移动,方向不变,再过10秒位于B点正上方;


(2)过点PPEAB,垂足为E

一热气球在距地面90米高的P处,

PE=90m

∵∠QPA=60°

∴∠1=60°

tan60°= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> = <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> = <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

AE= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> =30 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

气球以每秒9米的速度沿AB方向移动,5秒到达Q处,

PQ=5×9=45m),

PH=45+90=135m),

BE=135m),

AB=BE﹣AE=135﹣30 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> m

答:AB的长为(135﹣30 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> m

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

【点评】此题主要考查了仰角与俯角的应用,根据题意得出直角三角形利用已知角度得出HQ的长是解题关键.

15.在数学课外实践活动中,要测量教学楼的高度AM.下面是两位同学的对话:

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

请你根据两位同学的对话,结合图形计算教学楼的高度AM.(参考数据:sin20° <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> cos20° <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> tan20° <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

【考点】TA:解直角三角形的应用﹣仰角俯角问题.

【分析】AB=x,则BC=xDB=20+x,在Rt△△ABD中利用20°的锐角三角函数值即可求出BC的长,又因为AM=AB+BM,问题得解.

【解答】解:由题意得ABC=90°

∵∠ACB=45°

∴∠CAB=90°﹣ACB=90°﹣45°=45°

AB=BC

AB=x,则BC=xDB=20+x

RtABD

tanADB= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

tan20°= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

tan20° <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

x=11.25

BM=CE=1.5

AM=11.25+1.5=12.75

答:教学楼的高AM12.75米.

方法二

解:设BDx,则BC=x﹣20

∵∠ACB=45°ABC=90°

∴∠CAB=45°

AB=BC=x﹣20

RtABD

tanADB= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

tan20°= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

tan20°= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

x=31.25

BC=31.25﹣20=11.25

BM=CE=1.5

AM=11.25+1.5=12.75

答:教学楼的高AM约为12.75米.

【点评】本题考查了解直角三角形的应用,构造仰角所在的直角三角形,利用两个直角三角形的公共边求解是常用的解直角三角形的方法.

 

16.国家海洋局将中国钓鱼岛最高峰命名为“高华峰”,并对钓鱼岛进行常态化立体巡航.如图1,在一次巡航过程中,巡航飞机飞行高度为2001米,在点A测得高华峰顶F点的俯角为30°,保持方向不变前进1200米到达B点后测得F点俯角为45°,如图2.请据此计算钓鱼岛的最高海拔高度多少米.(结果保留整数,参考数值: <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> =1.732 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> =1.414

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

【考点】TA:解直角三角形的应用﹣仰角俯角问题.

【分析】CF=x,在RtACFRtBCF中,分别用CF表示ACBC的长度,然后根据AC﹣BC=1200,求得x的值,用h﹣x即可求得最高海拔.

【解答】解:设CF=x

RtACFRtBCF中,

∵∠BAF=30°CBF=45°

BC=CF=x

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> =tan30°

AC= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> x

AC﹣BC=1200米,

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> x﹣x=1200

解得:x=600 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> +1),

DF=h﹣x=2001﹣600 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> +1362(米).

答:钓鱼岛的最高海拔高度约362米.

【点评】本题考查了解直角三角形的应用,解答本题的关键是根据俯角构造直角三角形求出ACBC的长度,难度一般.

 

17.如图,小方在五月一日假期中到郊外放风筝,风筝飞到C 处时的线长为20米,此时小方正好站在A处,并测得CBD=60°,牵引底端B离地面1.5米,求此时风筝离地面的高度(结果精确到个位)

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

【考点】TA:解直角三角形的应用﹣仰角俯角问题.

【分析】易得DE=AB,利用BC长和60°的正弦值即可求得CD长,加上DE长就是此时风筝离地面的高度.

【解答】解:依题意得,CDB=BAE=ABD=AED=90°

四边形ABDE是矩形,(1分)

DE=AB=1.5,(2分)

RtBCD中, <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> ,(3分)

BC=20CBD=60°

CD=BC•sin60°=20× <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> =10 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> ,(4分)

CE=10 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> +1.519米,(5分)

答:此时风筝离地面的高度约为19米.

【点评】考查仰角的定义,能借助仰角构造直角三角形并解直角三角形是仰角问题常用的方法.

 

18.如图,小山顶上有一信号塔AB,山坡BC的倾角为30°,现为了测量塔高AB,测量人员选择山脚C处为一测量点,测得塔顶仰角为45°,然后顺山坡向上行走100米到达E处,再测得塔顶仰角为60°,求塔高AB(结果保留整数, <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> 1.73 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> 1.41

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

【考点】TA:解直角三角形的应用﹣仰角俯角问题.

【专题】12 :应用题.

【分析】先判断ACE为等腰三角形,在RtAEF中表示出EFAF,在RtBEF中求出BF,根据AB=AF﹣BF即可得出答案.

【解答】解:依题意可得:AEB=EAB=30°ACE=15°

∵∠AEB=ACE+∠CAE

∴∠CAE=15°

ACE为等腰三角形,

AE=CE=100m

RtAEF中,AEF=60°

EF=AEcos60°=50mAF=AEsin60°=50 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> m

RtBEF中,BEF=30°

BF=EFtan30°=50× <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> = <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> m

AB=AF﹣BF=50 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> = <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> 58(米).

答:塔高AB大约为58米.

【点评】本题考查了解直角三角形的知识,解答本题的关键是构造直角三角形,利用三角函数表示出相关线段的长度,难度一般.

 

19.天塔是天津市的标志性建筑之一,某校数学兴趣小组要测量天塔的高度,如图,他们在点A处测得天塔最高点C的仰角为45°,再往天塔方向前进至点B处测得最高点C的仰角为54°AB=112m,根据这个兴趣小组测得的数据,计算天塔的高度CDtan36°0.73,结果保留整数).

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

【考点】TA:解直角三角形的应用﹣仰角俯角问题.

【分析】首先根据题意得:CAD=45°CBD=54°AB=112m,在RtACD中,易求得BD=AD﹣AB=CD﹣112;在RtBCD中,可得BD=CD•tan36°,即可得CD•tan36°=CD﹣112,继而求得答案.

【解答】解:根据题意得:CAD=45°CBD=54°AB=112m

RtACD中,ACD=CAD=45°

AD=CD

AD=AB+BD

BD=AD﹣AB=CD﹣112m),

RtBCD中,tanBCD= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> BCD=90°﹣CBD=36°

tan36°= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

BD=CD•tan36°

CD•tan36°=CD﹣112

CD= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> 415m).

答:天塔的高度CD约为:415m

【点评】本题考查了仰角的知识.此题难度适中,注意能借助仰角构造直角三角形并解直角三角形是解此题的关键,注意掌握数形结合思想与方程思想的应用.

 

20.如图,一只猫头鹰蹲在一棵树ACB(点BAC上)处,发现一只老鼠躲进短墙DF的另一侧,猫头鹰的视线被短墙遮住,为了寻找这只老鼠,它又飞至树顶C处,已知短墙高DF=4米,短墙底部D与树的底部A的距离为2.7米,猫头鹰从C点观测F点的俯角为53°,老鼠躲藏处M(点MDE上)距D3米.

(参考数据:sin37°0.60cos37°0.80tan37°0.75

(1)猫头鹰飞至C处后,能否看到这只老鼠?为什么?

(2)要捕捉到这只老鼠,猫头鹰至少要飞多少米(精确到0.1米)?

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>

【考点】TA:解直角三角形的应用﹣仰角俯角问题.

【专题】12 :应用题.

【分析】(1)根据猫头鹰从C点观测F点的俯角为53°,可知DFG=90°﹣53°=37°,在DFG中,已知DF的长度,求出DG的长度,若DG3,则看不见老鼠,若DG3,则可以看见老鼠;

(2)根据(1)求出的DG长度,求出AG的长度,然后在RtCAG中,根据 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> =sinACG=sin37°,即可求出CG的长度.

【解答】解:(1)能看到;

由题意得,DFG=90°﹣53°=37°

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> =tanDFG

DF=4米,

DG=4×tan37°4×0.75=3(米),

故能看到这只老鼠;


(2)(1)得,AG=AD+DG=2.7+3=5.7(米),

 <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> =sinACG=sin37°

CG= <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a>  <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/1078/" title="初中" class="c1" target="_blank">初中</a> =9.5(米).

答:要捕捉到这只老鼠,猫头鹰至少要飞约9.5米.

【点评】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形并解直角三角形,利用三角函数求解相关线段,难度一般.