当前位置:首页 > 九年级 > 数学试卷

【331462】2019年湖北省武汉市东湖高新区中考数学模拟试卷(含答案解析)

时间:2025-02-05 18:18:41 作者: 字数:23957字
简介:

2019年湖北省武汉市东湖高新区中考数学模拟试卷

一.选择题(共10小题,满分30分,每小题3分)

1.我市2018年的最高气温为39,最低气温为零下7,则计算2018年温差列式正确的(  )

A.(+39)﹣(﹣7 B.(+39++7 C.(+39+(﹣7 D.(+39)﹣(+7

2.无论a取何值时,下列分式一定有意义的是(  )

A <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> B <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> C <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> D <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

3.下列运算正确的是(  )

A.﹣a2b+2a2ba2b B2aa2

C3a2+2a25a4 D2a+b2ab

4.在一个不透明的布袋中装有40个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.30左右,则布袋中黄球可能有(  )

A12 B14 C18 D28

5.如(x+a)与(x+3)的乘积中不含x的一次项,则a的值为(  )

A3 B.﹣3 C1 D.﹣1

6.点M12)关于y轴对称点的坐标为(  )

A.(﹣12 B.(﹣1,﹣2 C.(1,﹣2 D.(2,﹣1

7.由一些大小相同的小正方体搭成的几何体的左视图和俯视图,如图所示,则搭成该几何体的小正方体的个数最多是(  )

 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

A7 B8 C9 D10

8.某校八年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛.各参赛选手成绩的数据分析如下表所示,则以下判断错误的是(  )

平均数

中位数

众数

方差

八(1)班

94

93

94

12

八(2)班

95

95.5

93

8.4

A.八(2)班的总分高于八(1)班

B.八(2)班的成绩比八(1)班稳定

C.八(2)班的成绩集中在中上游

D.两个班的最高分在八(2)班

9.如图,在平面直角坐标系中,已知A经过点EBOC且点O为坐标原点,点Cy轴上,点Ex轴上,A(﹣32),则cosOBC的值为(  )

 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

A <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> B <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> C <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> D <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

10.如图,ADAC分别是O的直径和弦,且∠CAD30°OBAD,交AC于点B,若OB5,则BC的长是(  )

 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

A5 B5 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> C5 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> 10 D105 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

二.填空题(共6小题,满分18分,每小题3分)

11.计算 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> 9 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> 的结果是   

12.若m+n1mn2,则 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> 的值为   

13.为了弘扬中华传统文化,营造书香校园文化氛围,20171211日,兴义市新电学校举行中华传统文化知识大赛活动该学校从三名男生和两名女生中选出两名同学担任本次活动的主持人,则选出的恰为一男一女的概率是

   

14.将一张长方形纸片按如图所示的方式折叠,BDBE为折痕,若∠ABE20°,则∠DBC   度.

 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

15.如图,在菱形ABCD中,∠BAD120°CEAD,且CEBC,连接BE交对角线AC于点F,则∠EFC   °

 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

16.已知二次函数yx24x+k的图象的顶点在x轴下方,则实数k的取值范围是   

三.解答题(共8小题,满分72分)

17.解方程组: <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

18.如图,点DAB上一点,EAC的中点,连接DE并延长到F,使得DEEF,连接CF

求证:FCAB

 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

19.某校八(1)班同学为了解2018年姜堰某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,请解答以下问题:

月均用水量xt

频数(户)

频率

0x5

6

0.12

5x10

12

0.24

10x15

m

0.32

15x20

10

n

20x25

4

0.08

25x30

2

0.04

1)本次调查采用的调杳方式是   (填“普査”或“抽样调查”),样本容量是   

2)补全频数分布直方图:

3)若将月均用水量的频数绘成扇形统计图,则月均用水量“15x20的圆心角度数是   

4)若该小区有5000户家庭,求该小区月均用水量超过20t的家庭大约有多少户?

 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

20.一个进行数值转换的运行程序如图所示,从“输入实数x到“结果是否大于0称为“一次操作”

1)判断:(正确的打“√”,错误的打“×

当输入x3后,程序操作仅进行一次就停止.   

当输入x为负数时,无论x取何负数,输出的结果总比输入数大.   

2)探究:是否存在正整数x,使程序能进行两次操作,并且输出结果小于12?若存在,请求出所所有符合条件的x的值;若不存在,请说明理由.

 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

21.如图,以AB为直径作半圆O,点C是半圆上一点,∠ABC的平分线交OEDBE延长线上一点,且∠DAE=∠FAE

1)求证:ADO切线;

2)若sinBAC <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> ,求tanAFO的值.

 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

22.矩形AOBC中,OB8OA4.分别以OBOA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.FBC边上一个动点(不与BC重合),过点F的反比例函数y <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> k0)的图象与边AC交于点E

 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

1)当点F运动到边BC的中点时,求点E的坐标;

2)连接EFAB,求证:EFAB

3)如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.

23.△ABC中,BC12,高AD8,矩形EFGH的一边GHBC上,顶点EF分别在ABAC上,ADEF交于点M

1)求证: <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

2)设EFxEHy,写出yx之间的函数表达式;

3)设矩形EFGH的面积为S,求Sx之间的函数表达式,并写出S的最大值.

 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

24.如图,在平面直角坐标系中有一直角三角形AOBO为坐标原点,OA1tanBAO3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线yax2+bx+c经过点ABC

 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

1)求抛物线的解析式;

2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴lx轴交于一点E,连接PE,交CDF,求以CEF为顶点三角形与△COD相似时点P的坐标.


2019年湖北省武汉市东湖高新区中考数学模拟试卷

参考答案与试题解析

一.选择题(共10小题,满分30分,每小题3分)

1【分析】根据题意列出算式即可.

【解答】解:根据题意得:(+39)﹣(﹣7),

故选:A

【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.

2【分析】由分母是否恒不等于0,依次对各选项进行判断.

【解答】解:当a0时,a20,故AB中分式无意义;

a=﹣1时,a+10,故C中分式无意义;

无论a取何值时,a2+10

故选:D

【点评】解此类问题,只要判断是否存在a使分式中分母等于0即可.

3【分析】根据合并同类项的法则,合并时系数相加减,字母与字母的指数不变.

【解答】解:A、正确;

B2aaa

C3a2+2a25a2

D、不能进一步计算.

故选:A

【点评】此题考查了同类项定义中的两个“相同”:

1)所含字母相同;

2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.

还考查了合并同类项的法则,注意准确应用.

4【分析】利用频率估计概率得到摸到黄球的概率为0.3,然后根据概率公式计算即可.

【解答】解:设袋子中黄球有x个,

根据题意,得: <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> 0.30

解得:x12

即布袋中黄球可能有12个,

故选:A

【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.

5【分析】利用多项式乘以多项式法则计算,根据结果中不含x的一次项求出a的值即可.

【解答】解:原式=x2+a+3x+3a

由结果不含x的一次项,得到a+30

解得:a=﹣3

故选:B

【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.

6【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答.

【解答】解:点M12)关于y轴对称点的坐标为(﹣12).

故选:A

【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:

1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;

2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;

3)关于原点对称的点,横坐标与纵坐标都互为相反数.

7【分析】易得这个几何体共有2层,由俯视图可得第一层小正方体的个数,由左视图可得第二层小正方体的最多个数,相加即可.

【解答】解:由俯视图易得最底层有6个小正方体,第二层最多有3个小正方体,那么搭成这个几何体的小正方体最多为3+69个.

故选:C

【点评】考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.

8【分析】直接利用表格中数据,结合方差的定义以及算术平均数、中位数、众数得出答案.

【解答】解:A、∵9594,∴八(2)班的总分高于八(1)班,不符合题意;

B、∵8.412,∴八(2)班的成绩比八(1)班稳定,不符合题意;

C、∵9394,∴八(2)班的成绩集中在中上游,不符合题意;

D、无法确定两个班的最高分在哪个班,符合题意.

故选:D

【点评】此题主要考查了方差的定义以及算术平均数、中位数、众数,利用表格获取正确的信息是解题关键.

9【分析】连接EC,由∠COE90°,根据圆周角定理可得:ECA的直径,求出OEOC,根据勾股定理求出EC,解直角三角形求出即可.

【解答】解:过AAMx轴于MANy轴于N,连接EC

∵∠COE90°

ECA的直径,即ECO

A(﹣32),

OM3ON2

AMx轴,x轴⊥y轴,

AMOC

同理ANOE

NOC中点,MOE中点, <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

OE2AN6OC2AM4

由勾股定理得:EC <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> 2 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

∵∠OBC=∠OEC

cosOBCcosOEC <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>  <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>  <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

故选:B

【点评】此题考查了圆周角定理,勾股定理,坐标与图形性质,以及锐角三角函数定义,熟练掌握定理是解本题的关键.

10【分析】RtAOB中,已知了OB的长和∠A的度数,根据直角三角形的性质可求得OA的长,也就得到了直径AD的值,连接CD,同理可在RtACD中求出AC的长,由BCACAB即可得解.

【解答】解:连接CD

RtAOB中,∠A30°OB5,则AB10OA5 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

RtACD中,∠A30°AD2OA10 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

ACcos30°×10 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>  <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> ×10 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> 15

BCACAB15105

故选:A

 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

【点评】本题主要考查了直角三角形的性质和圆周角定理的应用,难度不大.

二.填空题(共6小题,满分18分,每小题3分)

11【分析】直接化简二次根式,进而合并求出答案.

【解答】解:原式=2 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>  <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

2 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> 3 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

=﹣ <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

故答案为:﹣ <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.

12【分析】原式通分并利用同分母分式的加法法则计算,将m+nmn的值代入计算即可求出值.

【解答】解:∵m+n1mn2

原式= <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>  <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

故答案为: <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.

13【分析】画出树状图,再根据概率公式列式进行计算即可得解.

【解答】解:画树状图如下:

 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

共有20种机会均等的结果,其中一男一女占12种,

则恰好抽中一男一女的概率是 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>  <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

故答案为: <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

【点评】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件AB的结果数目m,求出概率.

14【分析】根据翻折的性质可知,∠ABE=∠ABE,∠DBC=∠DBC,再根据平角的度数是180°,∠ABE20°,继而即可求出答案.

【解答】解:根据翻折的性质可知,∠ABE=∠ABE,∠DBC=∠DBC

又∵∠ABE+ABE+DBC+DBC180°

∴∠ABE+DBC90°

又∵∠ABE20°

∴∠DBC70°

故答案为:70

【点评】此题考查了角的计算,根据翻折变换的性质,得出三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠ABE,∠DBC=∠DBC是解题的关键.

15【分析】由菱形及菱形一个内角为120°,易得△ABC与△ACD为等边三角形.CEAD可由三线合一得CE平分∠ACD,即求得∠ACE的度数.再由CEBC等腰三角形把∠E度数求出,用三角形内角和即能去∠EFC

【解答】解:∵菱形ABCD中,∠BAD120°

ABBCCDAD,∠BCD120°,∠ACB=∠ACD <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> BCD60°

∴△ACD是等边三角形

CEAD

∴∠ACE <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> ACD30°

∴∠BCE=∠ACB+ACE90°

CEBC

∴∠E=∠CBE45°

∴∠EFC180°﹣∠E﹣∠ACE180°45°30°105°

故答案为:105°

【点评】本题考查了菱形的性质,等腰三角形及三线合一,三角形内角和.按照题目给的条件逐步综合信息即能求出答案.

16【分析】先根据函数解析式得出抛物线的开口向上,根据顶点在x轴的下方得出△>0,求出即可.

【解答】解:∵二次函数yx24x+ka10,图象的开口向上,

又∵二次函数yx24x+k的图象的顶点在x轴下方,

∴△=(﹣424×1×k0

解得:k4

故答案为:k4

【点评】本题考查了二次函数的图象与系数的关系和抛物线与x轴的交点,能根据题意得出(﹣424×1×k0是解此题的关键.

三.解答题(共8小题,满分72分)

17【分析】方程组利用加减消元法求出解即可.

【解答】解: <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

+×3得:10x50

解得:x5

x5代入得:y3

则方程组的解为 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

18【分析】利用已知条件容易证明△ADE≌△CFE,得出角相等,然后利用平行线的判定可以证明FCAB

【解答】证明:∵EAC的中点,

AECE

EFDE,∠AED=∠FEC

在△ADE与△CFE中,

 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

∴△ADE≌△CFESAS).

∴∠EAD=∠ECF

FCAB

【点评】此题主要考查了全等三角形的性质与判定,平行线的判定定理.通过全等得角相等,然后得到两线平行时一种常用的方法,应注意掌握运用.

19【分析】1)由抽样调查的定义及第1组的频数与频率可得答案;

2)根据频数=总数×频率可得m的值,据此即可补全直方图;

3)先求得n的值,再用360°乘以n可得答案;

4)用总户数乘以最后两组的频率之和可得答案.

【解答】解:(1)本次调查采用的调杳方式是抽样调查,样本容量为6÷0.1250

故答案为:抽样调查,50


2m50×0.3216

补全直方图如下:

 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>


3)∵n10÷500.2

月均用水量“15x20的圆心角度数是360°×0.272°

故答案为:72°


4)该小区月均用水量超过20t的家庭大约有5000×0.08+0.04)=600(户).

【点评】本题考查频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了用样本估计总体.

20【分析】1)直接根据运算程序进而判断得出答案;

2)直接根据运算程序得出关于x的不等式进而求出答案.

【解答】解:(1当输入x3后,程序操作进行一次后得到(﹣2+5=﹣1,故不可能就停止,故此说法错误;

故答案为:×

当输入x为负数时,无论x取何负数,输出的结果总比输入数大,正确;

故答案为:√;


2)由题意可得:﹣2x+50,且0<﹣2(﹣2x+5+512

解得: <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> x <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

x为正整数,

符合题意的x为:34

【点评】此题主要考查了一元一次不等式的应用,正确得出不等关系是解题关键.

21【分析】1)先利用角平分线定义、圆周角定理证明∠4=∠2,再利用AB为直径得到∠2+BAE90°,则∠4+BAE90°,然后根据切线的判定方法得到ADO切线;

2)先利用圆周角定理得到∠ACB90°,则sinBAC <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>  <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> ,设BC3kAC4k,所以AB5k.连接OEOE于点G,如图,利用垂径定理得OEAC,所以OEBCAGCG2k,则OG <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> kEGk,再证明△EFG∽△BFC,利用相似比得到 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>  <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> ,于是可计算出FG <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> CG <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> k,然后根据正切的定义求解.

【解答】1)证明:∵BE平分∠ABC

∴∠1=∠2

∵∠1=∠3,∠3=∠4

∴∠4=∠2

AB为直径,

∴∠AEB90°

∵∠2+BAE90°

∴∠4+BAE90°,即∠BAD90°

ADAB

ADO切线;

2)解:∵AB为直径,

∴∠ACB90°

RtABC中,∵sinBAC <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>  <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

BC3kAC4k,则AB5k

连接OEOE于点G,如图,

∵∠1=∠2

 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>  <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

OEAC

OEBCAGCG2k

OG <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> BC <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> k

EGOEOGk

EGCB

∴△EFG∽△BFC

 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>  <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>  <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>  <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

FG <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> CG <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> k

RtOGF中,tanGFO <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>  <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> 3

tanAFO3

 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

【点评】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理、垂径定理和解直角三角形.

22【分析】1)首先确定点B坐标,再根据中点的定义求出点E坐标即可;

2)连接AB,分别求出∠EFC,∠ABC的正切值即可解决问题;

3)先作出辅助线判断出RtMEDRtBDF,再确定出点EF坐标进而EG8 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> GF4 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> ,求出BD,最后用勾股定理建立方程求出k即可得出结论;

【解答】解:(1)∵四边形OACB是矩形,OB8OA4

C84),

AEEC

E44),

Ey <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> 上,

E44).


2)连接AB,设点F8a),

 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

k8a

E2a4),

CF4aEC82a

RtECF中,tanEFC <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>  <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> 2

RtACB中,tanABC <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> 2

tanEFCtanABC

∴∠EFC=∠ABC

EFAB


3)如图,

 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

设将△CEF沿EF折叠后,点C恰好落在OB上的G点处,

∴∠EGF=∠C90°ECEGCFGF

∴∠MGE+FGB90°

过点EEMOB

∴∠MGE+MEG90°

∴∠MEG=∠FGB

RtMEGRtBGF

 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>  <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

E <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> 4),F8 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> ),

ECACAE8 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> CFBCBF4 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

EGEC8 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> GFCF4 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

EM4

 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>  <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

GB2

RtGBF中,GF2GB2+BF2

即:(4 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> 2=(22+ <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> 2

k12

反比例函数表达式为y <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

【点评】此题是反比例函数综合题,主要考查了根据条件求反比例函数解析式及其应用,利用图形性质表示出相关点的坐标,根据点与函数的关系找出关系式,涉及内容有锐角三角函数,三角形相似的性质和判定,勾股定理的应用,注意点(mn)在函数y <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> 的图象上,则mnk的利用是解本题的关键.

23【分析】1)先判断出AM是△AEF的高,再判断出△AEF∽△ABC,即可得出结论;

2)先判断出四边形EMDG是矩形,得出DMEH,进而表示出AM8y,借助(1)的结论即可得出结论;

3)由矩形的面积公式得出函数关系式,即可得出结论.

【解答】解:(1)∵四边形EFGH是矩形,

EFBC

AD是△ABC的高,

ADBC

AMEF

EFBC

∴△AEF∽△ABC

 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> (相似三角形的对应边上高的比等于相似比);


2)∵四边形EFGH是矩形,

∴∠FEH=∠EHG90°

ADBC

∴∠HDM90°=∠FEH=∠EHG

四边形EMDH是矩形,

DMEH

EFxEHyAD8

AMADDMADEH8y

由(1)知, <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

y8 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> x0x12);


3)由(2)知,y8 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> x

SS矩形EFGHxyx8 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> x)=﹣ <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> x62+24

a=﹣ <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> 0

x6时,Smax24

【点评】此题是相似形综合题,主要考查了矩形的性质,相似三角形的判定和性质,矩形的面积公式,掌握相似三角形的性质是解本题的关键.

24【分析】1)根据正切函数,可得OB,根据旋转的性质,可得△DOC≌△AOB,根据待定系数法,可得函数解析式;

2根据相似三角形的判定,可得答案,根据相似三角形的性质,可得PMME的关系,根据解方程,可得t的值,根据自变量与函数值的对应关系,可得答案.

【解答】解:(1)在RtAOB中,OA1tanBAO <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> 3

OB3OA3

∵△DOC是由△AOB绕点O逆时针旋转90°而得到的,

∴△DOC≌△AOB

OCOB3ODOA1

ABC的坐标分别为(10),(03),(﹣30),代入解析式为

 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

解得 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

抛物线的解析式为y=﹣x22x+3

2)∵抛物线的解析式为y=﹣x22x+3

对称轴为l=﹣ <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a> =﹣1

E点坐标为(﹣10),如图 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

当∠CEF90°时,△CEF∽△COD

此时点P在对称轴上,即点P为抛物线的顶点,P(﹣14);

当∠CFE90°时,△CFE∽△COD,过点PPMx轴于M点,△EFC∽△EMP

 <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>  <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>  <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>  <a href="/tags/8/" title="模拟" class="c1" target="_blank">模拟</a> <a href="/tags/46/" title="答案" class="c1" target="_blank">答案</a> <a href="/tags/54/" title="试卷" class="c1" target="_blank">试卷</a> <a href="/tags/55/" title="数学" class="c1" target="_blank">数学</a> <a href="/tags/203/" title="武汉" class="c1" target="_blank">武汉</a> <a href="/tags/557/" title="湖北" class="c1" target="_blank">湖北</a>

MP3ME

P的横坐标为t

Pt,﹣t22t+3),

P在第二象限,

PM=﹣t22t+3ME=﹣1t

∴﹣t22t+33(﹣1t),

解得t1=﹣2t23,(与P在二象限,横坐标小于0矛盾,舍去),

t=﹣2时,y=﹣(﹣22(﹣2+33

P(﹣23),

当△CEF与△COD相似时,P点的坐标为(﹣14)或(﹣23).

【点评】本题考查了二次函数综合题,解(1)的关键是利用旋转的性质得出OCOD的长,又利用了待定系数法;解(2)的关键是利用相似三角形的性质得出MP3ME