当前位置:首页 > 九年级 > 数学试卷

【331220】22.1.2 二次函数y=ax2的图象和性质

时间:2025-01-21 13:47:40 作者: 字数:3956字
简介:

22.1.2 二次函数y=ax2的图象和性质

1.在同一直角坐标系中作出函数yx2y2x2y3x2的图象, <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 然后根据图象填空:

 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>

抛物线yx2的顶点坐标是( ),对称轴是________,开口向________

抛物线y2x2的顶点坐 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 标是( ),对称轴是________,开口向________

抛物线y3x2的顶点坐标是( ),对称轴是________,开口向________

可以发现,抛物线yx2y2x2y3x2的开口大小由二次项系数决定,二次项系数的绝对值越大,抛物线的开口越________

2.在同一直角坐标系中作出函数y=-x2y=-2x2 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> y=-3x2的图象,然后根据图象填空:

抛物线y=-x2的顶点坐标是( ),对称轴是________,开口向________

抛物线y=-2x2的顶点坐标是( ),对称轴是________,开口向________

抛物线y=-3x2的顶点坐标 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>( ),对称轴是________,开口向________

可以发现,抛物线y=-x2y=-2x2y=-3x2的开口大小由二次项系数决定,二次项系数的绝对值越大,抛物线的开口越________[来源:Zxxk.Com]

 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>

3(1)抛物线 yax2的开口方向和开口大小由________决定,当a________0时,抛物线的开口向上;当a_____ <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> ___0时,抛物线的开口向下;

(2)抛物线yax2的顶点坐标是( ),当a________0时,它是抛物线的最低点,即当x________时,函数取得最小值为________;当a________0时,它是抛物线的最高点,即当x________时,函数取得最大值为________

(3)抛物线yax2的对称轴是________

4.在同一直角坐标系中作出函数y=-x2y=-x22 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> y=-x23的图象,然后根据图象填空:

 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> [来源:Z#xx#k.Com]

抛物线y=-x2的顶点坐标是( ),对称轴是________,开口向________

抛物线y=-x22的顶点坐标是( ),对称轴是________,开口向________

抛物线y=-x23的顶点坐标是( <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> ),对称轴是________,开口向________

可以发现,抛物线 y=-x22y=-x23与抛物线  <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> y=-x2的形状、开口大小相同,只是抛物线的顶点位置发生了变化.把抛物线y=-x <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 2沿y轴向________平移________个单位即可得到抛物线 y=-x22;把抛物线y=-x <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 2沿y轴向________ <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a>________个单位即可得到抛物线y=-x23

5.填空(如果需要可作草图)

(1)抛物线yx2的顶点坐标是( ),对称轴是________,开口向________

(2)抛物线y=x22的顶点坐标是( ),对称轴是________,开口向________

(3)抛物线yx23的顶点坐标是( ),对称轴是________,开口向________

可以发现,抛物线yx22yx23与抛物线 yx2的形状、开口大小相同,只是抛物线的顶点位置发生了变化.把抛物线yx2沿y轴向________平移________个单位即可得到抛物线 yx22;把抛物线 yx2沿 y轴向________平移________个单位即可得到抛物线yx23

 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 答案:

1(00) y轴,上;

(00) y轴,上;

(0 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 0) y轴,上;小.

2(00) y轴,下;

(00) y轴,下;

(00) y轴,下;小.[来源:§§Z§X§X§K]

3(1) a,>,<;

(2) (00) ,>,00;<,00

(3) y轴.

4(00) y轴,下;

(02) y轴,下;

(0,-3) <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> y轴,下;

上,2;下,3

5(1) (00) y轴,上;

(2) (02) y轴,上;

(3) (0,-3) y轴,上;上,2 <a href="/tags/386/" title="性质" class="c1" target="_blank">性质</a> <a href="/tags/885/" title="函数" class="c1" target="_blank">函数</a> <a href="/tags/898/" title="图象" class="c1" target="_blank">图象</a> 下,3[来源:学科网]

思考·探索·交流

1.把抛物线yx2沿y轴向上平移3个单位能得到抛物线y3x2吗?把抛物线y=-x2沿y轴向下平移3个单位能得到抛物线y=-3x2吗?

答案:

1.不能,不能.[来源:学。科。网ZXXK]